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billiard = subset of R? (rectangle, circle, ...),

a ball moves only inside; a uniform linear motion = x” =0,
a ball impacts the boundary; absolutely elastic impact,
authors investigate the paths of solutions, periodic paths,
structure, presence of chaos, ...

billiards with uneven surface: questions of existence and
multiplicity of paths



Billiards

» billiards with uneven surface

[Gabor2016]

Gabor, G.: On the Dirichlet problem in billiard spaces, J. Math.
Anal. Appl. 440 (2016) 677-691.

Dirichlet problem in multidimensional case

X"(t) = f(t, x(t)), for a.e.t € [0, T], x(t) € int K,
AX'(s) = 1(x(s), X'(s)), if x(s) € 0K,



Billiards

» billiards with uneven surface

[Gabor2016]

Gabor, G.: On the Dirichlet problem in billiard spaces, J. Math.
Anal. Appl. 440 (2016) 677-691.

» impact law for absolutely elastic impacts (equal angles before
and after a collision), i.e. in 1-dim. case:

X'(s+) = —X'(s=), if |x(s)|=r,

» one dimensional case: K = [—r,r] C R,

» multidimensional case: K C R has "smooth” boundary,
0 € int K, K is strongly star-shaped,

P there exist infinitely many solutions.

» Proofs: based on shooting method and continuous
dependence on initial conditions x(0) =0, x(0) = d.



Billiards

» billiards with uneven surface

» in 1D, there is no need of Lipschitz continuity

» there could be said more precise information about the infinite
sequence of solutions

» using Schauder Fixed Point Theorem we are able to prove the
existence of solutions with prescribed number of impacts

» | have used the transform into nonimpulsive (but singular)
problem

P the idea is very simple and well known:



1D billiard Dirichlet problem — basic idea

» the ball moves inside of a line segment between 0 and R.
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» uniform linear motion inside of the segment:

|
xX"(t) =0 if x(t) € (0,R)

P absolutely elastic bounce at the boundary:

X'(t+) = —x'(t—) if x(t) € {0, R}.



1D billiard Dirichlet problem — basic idea

Dirichlet problem:
» positions A, B € (0, R) and time instant T > 0 are given

> we seek for solutions in 1D-billiard satisfying

x(0)=A, x(T)=8B.
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X'(t4) = =x'(t—) if x(t) € {0, R}
x(0)=A, x(T)=8B
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x"=0
'(t4) = —=x'(t—) if x(t) € {0, R}
x(0)=A, x(T)=B8B
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1D billiard Dirichlet problem — basic idea

Therefore the problem

(classicalBIL)

x"(t)=0 if x(t) € (0, R),
X' (t+) = —x'(t—) if x(t) € {0, R},
x(0)=A, x(T)=B (A ,Be(0,R))

» has infinitely many solutions,

» in particular: for each p € N there exist exactly two solutions
having exactly p impacts with the boundary.



1D billiard Dirichlet problem — basic idea

Therefore the problem

(classicalBIL)

x"(t)=0 if x(t) € (0, R),
X' (t+) = —x'(t—) if x(t) € {0, R},
x(0)=A, x(T)=B (A ,Be(0,R))

» has infinitely many solutions,

» in particular: for each p € N there exist exactly two solutions
having exactly p impacts with the boundary.

» can we generalize this idea for billiard with uneven billiard or
subjected to external forces?



Dirichlet problem in billiard spaces

[Tomecek2019]

J.T.: Multiple solutions of a Dirichlet problem in one-dimensional
billiard space, Math. Notes (Miskolc), 20(2):1261-1272, 20109.

[GaborTomecek2023]

Grzegorz Gabor and J.T.: Multiple solutions of the Dirichlet
problem in multidimensional billiard spaces, J Fix Point Theory A
25, 2023, Article No 7.
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Jorge Rodriguez-Lépez and J. T.: Second—order discontinuous
ODEs and billiard problems. J. Math. Anal. Appl., 536(1):128237,
2024.



Dirichlet problem in billiard spaces

[Gabor2023]

Gabor, G., Tessellation technique in solving the two-point
boundary value problem in multidimensional billiard spaces, J.
Math. Anal. Appl. 526:127208,2023




1D billiard problem with velocity dependent RHS

P we investigate Dirichlet problem

(BIL)

x" = f(t,x,x") if x(t) € (0, R),
X' (t+) = —=X'(t—) if x(¢t) € {0, R},
x(0)=A, x(T)=B, (A Be(0,R))

with f € Car([0, T] x [0, R] x R).

[Krajs¢akovi—Tometek,2027]

Véra Kraj$¢dkova, J.T.: Dirichlet problem in one-dimensinal
billiard space with velocity dependent right-hand side, submitted.



1D billiard problem with velocity dependent RHS

Theorem
Let A,B € (0,R), f € Car([0, T] x [0, R] x R) and there exist
m € LY([0, T]) and nonnegative, increasing ¢ € C([0, c0)) such
that

1£(t, %, y)| < m(t) + o(ly]) (*)
forae. t€[0,T], all xe[0,R], y € R.
If there exist p € N and L > 0 such that

T

VA(L) = L+ Tp(L)+1 < p < (L T(L)~1 = Wa(L),

R

where m = foT m(t) dt, then there exist at least two solutions of
(BIL) having exactly p impacts with the boundary.



Example

X" =t + \|x|” sgn x + w|x|" sgn X/,

for

T=1,R=1 a=1 =05 v=05 w=05and A =0.1
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1D billiard problem with velocity dependent RHS

Corollary

Let A,B € (0,R), f € Car([0, T] x [0, R] x R). Let
m € LY([0, T]) be such that

|£(t,x, y)| < m(t)

fora.e. t €0, T], all x € [0, R], y € R, then for each p € N

satisfying
T

R
where m = foT m(t) dt, there exist at least two solutions of (BIL)
having exactly p impacts with the boundary.

p=5m+1,

... for ¢ =0; L can be arbitrarily large ...



1D billiard problem with velocity dependent RHS

Theorem
Let A,B € (0,R), f € Car([0, T] x [0, R] x R) satisfy (*) and

1
lim sup () < —

Then (BIL) has infinitely many solutions. In particular, there exists
an increasing sequence of positive integers {p,} such that for each
n € N there exists at least two solutions of (BIL) with exactly p,
impacts with the boundary.

.. satisfied for sublinear ; or linear with small linear coefficient



The proofs
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» problem on [0, T] x [0, R] x R,
» regular RHS,
» problem with (state-dependent) impulses.
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» Original problem (BIL):

» problem on [0, T] x [0, R] x R,

» regular RHS,

» problem with (state-dependent) impulses.
» Extended problems (EXT):

» problem on [0, T] x R x R,
» non-impulsive problem,
» singular RHS; possibly unbounded in the last variable.



Construction of (EXT)

» New right-hand side of ODE,

» the extension of f:

f(t,x —2kR,y)
if x € (2kR, (2k + 1)R),
fr(t,x,y) =< —f(t,2(k + )R — x, —y)

if x € ((2k + 1)R, 2(k + 1)R),
0, ifx=kR, keZ

» odd, 2R-periodic in the second variable



Construction of (EXT)

» We define a folding function A:

AS) s —2kR if s € [2kR, (2k + 1)R),
S) =
2k +1)R—s ifse[(2k+1)R,2(k +1)R).
A
R
2R _p 0 p 2R x

» A:R — [0, R], idempotent, 2R-periodic, continuous.



We consider these extended problems

(EXT)
y"' = (t,y,y")
y(0)=A, y(T)=8
where .
A(B) = B,
i.e.

B=B,2R—-B,2R+8B, ..., —-B, —2R+ B, ...



Lemma: (EXT) — (BIL)
If y € (EXT) is strictly monotone, then

Aoy

solves (BIL) having exactly

impacts with the boundary.



Lemma: (EXT) — (BIL)

If y € (EXT) is strictly monotone, then

Aoy

solves (BIL) having exactly

impacts with the boundary.

Question: Does a strictly monotone solution of (EXT) exist?

(moreover, we want at least two)

> Spoiler: Yes, if B is in an appropriate distance from A.

» But, first we define two more auxiliary problems.
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» regular RHS,
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» Extended problems (EXT):
» problem on [0, T] x R x R,

» non-impulsive problem,
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» Truncated problems in the last variable (TRUNC):
» class of problems on [0, T] x R x R
» bounded in the last variable,
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Construction of (TRUNC)

» Truncation of f* in the last variable: for each L > 0 we define
]

f°(t, x,y) = f*(t,x, max{—L, min{y, L}})

» f is bounded by a Lebesgue integrable function over [0, T]
P it is still singular in x

(TRUNC)

y” = fl:k(tayvy/)-
y(0)=A, y(T)=8

y e (TRUNC) A |y/| <L = ye (EXT)
y € (TRUNC) A |y/|<L A Y #0 = Aoye(BIL)
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The proofs

» Original problem (BIL):
» problem on [0, T] x [0, R] x R,
» regular RHS,
» problem with (state-dependent) impulses.

» Extended problems (EXT):
» problem on [0, T] x R x R,

» non-impulsive problem,
» singular RHS; possibly unbounded in the last variable.

» Truncated problems in the last variable (TRUNC):

» class of problems on [0, T] x R x R
» bounded in the last variable,

» depending on a real parameter L

» but still singular RHS.

» Regularized problems (REG(n)):

> sequence of regular problems on [0, T] x R x R,
» non-impulsive problem,
» regular RHS.
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Construction of (REG(n))

» f(t,x,y) has possible discontinuity at x = kR (each k € Z)

> we define regularizing functions 7, : R — R

Mn
14%
R 1y X
0 n R(1-%)R

» R-periodic; continuous; zero at kR, k € Z; 1, — 1 on (0, R).
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Sequence of regular problems

For n € N we consider

(REG(n))

2" = n.(2)fi(t, 2, 2),
2(0)=A, z(T)=B.

» regular RHS

» for each A, B € R and n € N there exists at least one solution
of (REG(n)), z, (<= Schauder FPT).



Sequence of regular problems

For n € N we consider

(REG(n))

2" = n.(2)fi(t, 2, 2),
z(0)=A, z(T)=5.

» regular RHS
» for each A, B € R and n € N there exists at least one solution
of (REG(n)), z, (<= Schauder FPT).

>

B-A B-A

— —m = Te(l) < z(1) < + 7+ Te(L),

tel[0,T], neN.
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> z, — zin Cl, z € (REG(kyn)) (<= Arzela—Ascoli)

B-A B-A
—— —m—Typ(L) <Z(t) <

+m+ Te(L),



Sequence of regular problems

> z, — zin Cl, z € (REG(kyn)) (<= Arzela—Ascoli)
>

B-A B-A
47*—W—TﬂwsiMS

te |0, T],

+m+ Te(L),

B—A
> if 0 < —ﬁ—T«p(L)&T—i—ﬁ—FT@(L)SL,
then z € (TRUNC) & 0 < 2/ < L = Aoz e (BIL) (I11)



Sequence of regular problems

> z, — zin Cl, z € (REG(kyn)) (<= Arzela—Ascoli)

B-A B-A
47*—W—TﬂwsiMS

te |0, T],
B—

+m+ Te(L),

A B—A
> if 0 < —ﬁ—T«p(L)&T—i—ﬁ—FT@(L)SL,
then z € (TRUNC) & 0 < Z/ < L = Aoz e (BIL) (1)
5 .

A B-A
> if —L < —m—T@(L)&?—Fﬁ—F Te(L) <0,
then z € (TRUNC) & —L <z <0 = Aoze (BIL) (I
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