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Billiards

▶ billiard = subset of R2 (rectangle, circle, . . .),

▶ a ball moves only inside; a uniform linear motion ⇒ x ′′ = 0,

▶ a ball impacts the boundary; absolutely elastic impact,

▶ authors investigate the paths of solutions, periodic paths,
structure, presence of chaos, . . .

▶ billiards with uneven surface: questions of existence and
multiplicity of paths
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Billiards

▶ billiards with uneven surface

[Gabor2016]

Gabor, G.: On the Dirichlet problem in billiard spaces, J. Math.
Anal. Appl. 440 (2016) 677–691.

Dirichlet problem in multidimensional case

x ′′(t) = f (t, x(t)), for a.e.t ∈ [0,T ], x(t) ∈ intK ,

△x ′(s) = I (x(s), x ′(s)), if x(s) ∈ ∂K ,

x(0) = x(T ) = 0.



Billiards
▶ billiards with uneven surface

[Gabor2016]

Gabor, G.: On the Dirichlet problem in billiard spaces, J. Math.
Anal. Appl. 440 (2016) 677–691.

▶ impact law for absolutely elastic impacts (equal angles before
and after a collision), i.e. in 1-dim. case:

x ′(s+) = −x ′(s−), if |x(s)| = r ,

▶ one dimensional case: K = [−r , r ] ⊂ R,
▶ multidimensional case: K ⊂ R2k has ”smooth” boundary,

0 ∈ intK , K is strongly star-shaped,

▶ there exist infinitely many solutions.

▶ Proofs: based on shooting method and continuous
dependence on initial conditions x(0) = 0, ẋ(0) = d .



Billiards

▶ billiards with uneven surface

▶ in 1D, there is no need of Lipschitz continuity

▶ there could be said more precise information about the infinite
sequence of solutions

▶ using Schauder Fixed Point Theorem we are able to prove the
existence of solutions with prescribed number of impacts

▶ I have used the transform into nonimpulsive (but singular)
problem

▶ the idea is very simple and well known:



1D billiard Dirichlet problem – basic idea

▶ the ball moves inside of a line segment between 0 and R.

x(t)0 R

▶ uniform linear motion inside of the segment:

x ′′(t) = 0 if x(t) ∈ (0,R)

▶ absolutely elastic bounce at the boundary:

x ′(t+) = −x ′(t−) if x(t) ∈ {0,R}.



1D billiard Dirichlet problem – basic idea

Dirichlet problem:

▶ positions A,B ∈ (0,R) and time instant T > 0 are given

▶ we seek for solutions in 1D-billiard satisfying

x(0) = A, x(T ) = B.
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1D billiard Dirichlet problem – basic idea

Therefore the problem

(classicalBIL)

x ′′(t) = 0 if x(t) ∈ (0,R),

x ′(t+) = −x ′(t−) if x(t) ∈ {0,R},

x(0) = A, x(T ) = B (A,B ∈ (0,R))

▶ has infinitely many solutions,

▶ in particular: for each p ∈ N there exist exactly two solutions
having exactly p impacts with the boundary.

▶ can we generalize this idea for billiard with uneven billiard or
subjected to external forces?
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Dirichlet problem in billiard spaces

[Tomecek2019]

J.T.: Multiple solutions of a Dirichlet problem in one-dimensional
billiard space, Math. Notes (Miskolc), 20(2):1261–1272, 2019.

[GaborTomecek2023]

Grzegorz Gabor and J.T.: Multiple solutions of the Dirichlet
problem in multidimensional billiard spaces, J Fix Point Theory A
25, 2023, Article No 7.

[RodriguezLopezTomecek2024]

Jorge Rodŕıguez-López and J. T.: Second–order discontinuous
ODEs and billiard problems. J. Math. Anal. Appl., 536(1):128237,
2024.



Dirichlet problem in billiard spaces

[Gabor2023]

Gabor, G., Tessellation technique in solving the two-point
boundary value problem in multidimensional billiard spaces, J.
Math. Anal. Appl. 526:127208,2023



1D billiard problem with velocity dependent RHS

▶ we investigate Dirichlet problem

(BIL)

x ′′ = f (t, x , x ′) if x(t) ∈ (0,R),

x ′(t+) = −x ′(t−) if x(t) ∈ {0,R},
x(0) = A, x(T ) = B, (A,B ∈ (0,R))

with f ∈ Car([0,T ]× [0,R] × R).

[Kraǰsčáková–Tomeček,202?]

Věra Kraǰsčáková, J.T.: Dirichlet problem in one-dimensinal
billiard space with velocity dependent right-hand side, submitted.



1D billiard problem with velocity dependent RHS

Theorem

Let A,B ∈ (0,R), f ∈ Car([0,T ]× [0,R]× R) and there exist
m ∈ L1([0,T ]) and nonnegative, increasing φ ∈ C([0,∞)) such
that

|f (t, x , y)| ≤ m(t) + φ(|y |) (*)

for a.e. t ∈ [0,T ], all x ∈ [0,R], y ∈ R.
If there exist p ∈ N and L > 0 such that

Ψ1(L) =
T

R
(m+Tφ(L))+1 ≤ p ≤ T

R
(L−m−Tφ(L))−1 = Ψ2(L),

where m =
∫ T
0 m(t) dt, then there exist at least two solutions of

(BIL) having exactly p impacts with the boundary.



Example

x ′′ = tα + λ|x |β sgn x + ω|x ′|γ sgn x ′,

for

T = 1, R = 1, α = 1, β = 0.5, γ = 0.5, ω = 0.5 and λ = 0.1
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1D billiard problem with velocity dependent RHS

Corollary

Let A,B ∈ (0,R), f ∈ Car([0,T ]× [0,R]× R). Let
m ∈ L1([0,T ]) be such that

|f (t, x , y)| ≤ m(t)

for a.e. t ∈ [0,T ], all x ∈ [0,R], y ∈ R, then for each p ∈ N
satisfying

p ≥ T

R
m + 1,

where m =
∫ T
0 m(t) dt, there exist at least two solutions of (BIL)

having exactly p impacts with the boundary.

... for φ ≡ 0; L can be arbitrarily large ...



1D billiard problem with velocity dependent RHS

Theorem

Let A,B ∈ (0,R), f ∈ Car([0,T ]× [0,R]× R) satisfy (*) and

lim sup
y→∞

φ(y)

y
<

1

2T
.

Then (BIL) has infinitely many solutions. In particular, there exists
an increasing sequence of positive integers {pn} such that for each
n ∈ N there exists at least two solutions of (BIL) with exactly pn
impacts with the boundary.

... satisfied for sublinear φ; or linear with small linear coefficient



The proofs

▶ Original problem (BIL):
▶ problem on [0,T ]× [0,R]× R,
▶ regular RHS,
▶ problem with (state-dependent) impulses.
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Construction of (EXT)

▶ New right-hand side of ODE,

▶ the extension of f :

f ∗(t, x , y) =



f (t, x − 2kR, y)

if x ∈ (2kR, (2k + 1)R),

−f (t, 2(k + 1)R − x ,−y)

if x ∈ ((2k + 1)R, 2(k + 1)R),

0, if x = kR, k ∈ Z

▶ odd, 2R-periodic in the second variable



Construction of (EXT)

▶ We define a folding function ∆:

∆(s) =

{
s − 2kR if s ∈ [2kR, (2k + 1)R),

2(k + 1)R − s if s ∈ [(2k + 1)R, 2(k + 1)R).

x0

∆

2R−2R

R

R−R

▶ ∆ : R → [0,R], idempotent, 2R-periodic, continuous.



We consider these extended problems

(EXT)

y ′′ = f ∗(t, y , y ′)

y(0) = A, y(T ) = B̃

where
∆(B̃) = B,

i.e.

B̃ = B, 2R − B, 2R + B, . . . , −B, −2R + B, . . .



Lemma: (EXT) → (BIL)

If y ∈ (EXT ) is strictly monotone, then

∆ ◦ y

solves (BIL) having exactly∣∣∣∣∣
⌊
A

R

⌋
−

⌊
B̃

R

⌋∣∣∣∣∣
impacts with the boundary.

Question: Does a strictly monotone solution of (EXT) exist?
(moreover, we want at least two)

▶ Spoiler: Yes, if B̃ is in an appropriate distance from A.

▶ But, first we define two more auxiliary problems.
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Construction of (TRUNC)
▶ Truncation of f ∗ in the last variable: for each L > 0 we define

f ∗L (t, x , y) = f ∗(t, x ,max{−L,min{y , L}})

▶ f ∗L is bounded by a Lebesgue integrable function over [0,T ]
▶ it is still singular in x

(TRUNC)

y ′′ = f ∗L (t, y , y
′).

y(0) = A, y(T ) = B̃

y ∈ (TRUNC) ∧ |y ′| ≤ L =⇒ y ∈ (EXT)

y ∈ (TRUNC) ∧ |y ′| ≤ L ∧ y ′ ̸= 0 =⇒ ∆ ◦ y ∈ (BIL)



The proofs

▶ Original problem (BIL):
▶ problem on [0,T ]× [0,R]× R,
▶ regular RHS,
▶ problem with (state-dependent) impulses.

▶ Extended problems (EXT):
▶ problem on [0,T ]× R× R,
▶ non-impulsive problem,
▶ singular RHS; possibly unbounded in the last variable.

▶ Truncated problems in the last variable (TRUNC):
▶ class of problems on [0,T ]× R× R
▶ bounded in the last variable,
▶ depending on a real parameter L
▶ but still singular RHS.

▶ Regularized problems (REG(n)):
▶ sequence of regular problems on [0,T ]× R× R,
▶ non-impulsive problem,
▶ regular RHS.
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Construction of (REG(n))

▶ f ∗L (t, x , y) has possible discontinuity at x = kR (each k ∈ Z)

▶ we define regularizing functions ηn : R → R

x0

1

R

ηn

R
2n

R(1− 1
2n )

▶ R-periodic; continuous; zero at kR, k ∈ Z; ηn → 1 on (0,R).
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Sequence of regular problems

For n ∈ N we consider

(REG(n))

z ′′ = ηn(z)f
∗
L (t, z , z

′),

z(0) = A, z(T ) = B̃.

▶ regular RHS

▶ for each A, B̃ ∈ R and n ∈ N there exists at least one solution
of (REG(n)), zn (⇐ Schauder FPT).

▶

B̃ − A

T
−m − Tφ(L) ≤ z ′n(t) ≤

B̃ − A

T
+m + Tφ(L),

t ∈ [0,T ], n ∈ N.
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Sequence of regular problems

▶ zkn → z in C 1, zkn ∈ (REG (kn)) (⇐ Arzelà–Ascoli)

▶

B̃ − A

T
−m − Tφ(L) ≤ z ′(t) ≤ B̃ − A

T
+m + Tφ(L),

t ∈ [0,T ],

▶ if 0 <
B̃ − A

T
−m − Tφ(L) &

B̃ − A

T
+m + Tφ(L) ≤ L,

then z ∈ (TRUNC) & 0 < z ′ ≤ L ⇒ ∆ ◦ z ∈ (BIL) (!!!)

▶ if −L ≤ B̃ − A

T
−m − Tφ(L) &

B̃ − A

T
+m + Tφ(L) < 0,

then z ∈ (TRUNC) & −L ≤ z ′ < 0 ⇒ ∆ ◦ z ∈ (BIL) (!!!)
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▶

B̃ − A

T
−m − Tφ(L) ≤ z ′(t) ≤ B̃ − A

T
+m + Tφ(L),

t ∈ [0,T ],

▶ if 0 <
B̃ − A

T
−m − Tφ(L) &

B̃ − A

T
+m + Tφ(L) ≤ L,

then z ∈ (TRUNC) & 0 < z ′ ≤ L ⇒ ∆ ◦ z ∈ (BIL) (!!!)

▶ if −L ≤ B̃ − A

T
−m − Tφ(L) &

B̃ − A

T
+m + Tφ(L) < 0,

then z ∈ (TRUNC) & −L ≤ z ′ < 0 ⇒ ∆ ◦ z ∈ (BIL) (!!!)



References
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