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1. INTRODUCTION

In the present report, for singular in the time variable differential systems
u′
i = fi(t, u1, u2) (i = 1, 2), (1.1)
u′
i = gi(t, u3−i) (i = 1, 2), (1.1′),

we consider the problem on the existence of so-called Kneser solution, defined
on the positive half-axis, and satisfying the initial condition

lim
t→0

u1(t) = c. (1.2)

Conditions that are unimprovable in a certain sense are given, guaranteeing, re-
spectively, the existence, uniqueness, monotonicity, boundedness, and vanishness
at infinity of a solution to this problem.

We use the following notation.

R = {−∞,+∞}, R+ = [0,+∞[ , R− = ] − ∞, 0];

L(I) is the space of Lebesgue integrable real functions, defined in the interval
I;
Lloc(I), where I is either open or semi-open interval, is the space of defined

in I real functions whose restrictions to any closed bounded interval contained in
I are Lebesgue integrable;

We say that the function f : I × Rm → R belongs to the Carathéodory space
Kloc(I×Rm) if the function f(·, x1, . . . , xm) : I → R is measurable for any
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arbitrarily fixed (x1, . . . , xm) ∈ Rm, the function f(t, ·, . . . , ·) : Rm → R
is continuous for almost all arbitrarily fixed t ∈ I , and

max
{
|f(·, x1, . . . , xm)| :

m∑
i=1

|xi| ≤ x
}
∈ Lloc(I)

for every positive constant x.

We investigate systems (1.1) and (1.1′) in the case, where

f1 ∈ Kloc(R+ × R2), f2 ∈ Kloc( ]0,+∞[×R2), (1.3)

and the conditions

fi(t, 0, 0) = 0, (−1)ifi(t, x1, x2) ≥ 0 (1.4)
for t > 0, x1 ∈ R+, x2 ∈ R− (i = 1, 2),

g1 ∈ Kloc(R+ × R), g2 ∈ Kloc( ]0,+∞[×R), (1.5)
gi(t, y) ≥ gi(t, x), gi(t,−x) = −gi(t, x) (1.6)

for t > 0, y ≥ x (i = 1, 2)

are satisfied. At the same time, as noted above, we do not exclude cases where
the differential systems under consideration have non-integrable singularities in
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the time variable at the point t = 0, namely, the cases where
1∫

0

f2(t, x1, x2) dt=+∞,

1∫
0

g2(t, x1) dt=+∞ for x1>0, x2<0.

Definition 1.1. A vector-function (u1, u2) : ]0,+∞[→ R2 is said to be a solu-
tion to system (1.1) if it is absolutely continuous on every closed bounded interval
contained in ]0,+∞[ , and satisfies this system almost everywhere in ]0,+∞[ .

Definition 1.2. A solution (u1, u2) to system (1.1) is said to be:
1) Kneser solution if either

u1(t) ≥ 0, u2(t) ≤ 0 for t > 0,

or
u1(t) ≤ 0, u2(t) ≥ 0 for t > 0;

2) strongly Kneser solution if
u1(t)u2(t) < 0 for t > 0;

3) monotone solution if u1 and u2 are monotone functions;
4) vanishing at infinity if

lim
t→+∞

ui(t) = 0 (i = 1, 2).
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Before moving on to the formulation of the main results, let us briefly discuss
the history of the problem.

Consider the linear homogeneous differential equation
v′′ = p(t)v, (1.7)

where p ∈ Lloc(R+) is a nonnegative function. Let v1 be a solution to this
equation, satisfying the initial conditions

v1(0) = 0, v′
1(0) = 1,

and

v2(t) = v1(t)

+∞∫
t

ds

v2
1(s)

for t > 0.

Then v1, v2 is a fundamental system of solutions to (1.7). On the other hand, it
is evident that

v1(t) ≥ t, 0 < v2(t) ≤ 1 for t > 0.

Therefore, in this case, the set of bounded solutions to (1.7) is a one-dimensional
linear space with the basis v2.

A. Kneser in [9] proved that if f ∈ Kloc(R+ × R) is a nondecreasing in
the second argument function and f(t, 0) ≡ 0, then the nonlinear differential
equation

v′′ = f(t, v) (1.8)
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has the property analogous to that of equation (1.7). More precisely, no matter
how a real number c is, equation (1.8) has a unique bounded solution, satisfying
the initial condition

v(0) = c. (1.9)
On the other hand, it is easy to see that in this case for the boundedness of any
solution v : R+ → R to equation (1.8) it is necessary and sufficient that this
solution satisfies the inequality

v′(t)v(t) ≤ 0 for t ∈ R+.

(Such a solution is said to be a Kneser solution). It is also easy to see that if
+∞∫
0

tf(t, x) dt = +∞, (1.10)

then any Kneser solution to equation (1.8) is vanishing at infinity.
Therefore, Kneser actually proved the following

Theorem 1.1. If f ∈ Kloc(R+ ×R) is a nondecreasing in the second argument
function and

f(t, 0) ≡ 0,

then for any real number c problem (1.8), (1.9) has a unique Kneser solution.
And if f in addition satisfies condition (1.10), then that solution is vanishing at
infinity.
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It seems that the author was motivated to obtain this result by purely mathemat-
ical interest, and not by any consideration of its practical application. However,
three decades after the publication of Knezer’s work, the problem he posed really
found an interesting application in physics. In 1927, the outstanding physicists
Fermi and Thomas, in connection with the question of the distribution of elec-
trons in a heavy atom, in their works [3], [10] considered the boundary value
problem

u′′ = t−
1
2 |u|

3
2sgn (u), (1.11)

u(0) = 1, lim
t→+∞

u(t) = 0, (1.12)

and independently of each other proved its unique solvability. They were not
familiar with Kneser’s paper and did not know that their result was a rather par-
ticular case of the above given Theorem 1.1. Indeed, if

f(t, x) ≡ t−
1
2 |x|

3
2sgn (x),

then from Theorem 1.1 it follows the following simple

Corollary 1.1. Equation (1.11) has a unique Kneser solution, satisfying the ini-
tial condition

u(0) = 1, (1.12′)

and this solution is vanishing at infinity.
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According to this result, problem (1.11), (1.12) is not only uniquely solvable
but it is also equivalent to problem (1.11), (1.12′) in a class of Kneser solutions.

True, the above-cited Fermi and Thomas papers do not contain new mathemat-
ical result, but they significantly determined the interest of specialists in Kneser
type problems. The results obtained in this direction are contained in the review
work by I. Kiguradze and B. Shekhter [8].

Note that the terms ”Kneser solution” and ”Kneser’s problem”, already estab-
lished in the literature today, for both second and higher order differential equa-
tions and systems were introduced by I. Kiguradze.

Investigations by I. Kiguradze and T. Chanturia (see, [1, 2, 4, 5, 6]) played a
significant role in the construction of a qualitative theory of monotone solutions
to nonautonomous differential equations and systems.

The results on the existence, uniqueness and asymptotic behavior of Kneser
solutions to problems (1.1), (1.2) and (1.1′), (1.2), given in the present report, are
obtained jointly with I. Kiguradze. They fundamentally differ from previously
known results (see, [7, 8]) in that they include cases when the differential systems
under consideration have a non-integrable singularity in the time variable at the
initial point.
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2. PROBLEM (1.1), (1.2)

When discussing this problem, it is always assumed that conditions (1.3) are
satisfied, r is an arbitrarily fixed positive number, and f∗

1 , f1∗, f2∗ are functions
defined by the following equalities:

f∗
1 (t, x) = max

{
|f1(t, x1, x2)| : 0 ≤ x1 ≤ r, −x ≤ x2 ≤ 0

}
for t > 0, x ∈ R+,

f1∗(t, x) = inf
{
|f1(t, x1, x2)| : 0 ≤ x1 ≤ r, x2 ≤ −x

}
for t > 0, x ∈ R+,

f2∗(t, x) = inf
{
|f2(t, x1, x2)| : x ≤ x1 ≤ r, x2 ∈ R−

}
for t > 0, 0 ≤ x ≤ r.



10

Theorem 2.1. Let there exist positive numbers a, ℓ0, and nonnegative functions
ℓ ∈ Lloc( ]0, a]), ℓ1 ∈ L([0, a]) (2.1)

such that along with (1.4) the conditions
f2(t, x1, x2) ≤ ℓ(t) +

(
ℓ1(t) + ℓ0|f1(t, x1, x2)|

)
(1 + |x2|) (2.2)

for 0<t<a, 0≤x1≤r, x2 ∈ R−,

lim
x→+∞

a∫
0

f1∗(t, x) dt > r, (2.3)

a∫
0

(
f∗
1

(
t, x

a∫
t

ℓ(s) ds
))

dt < +∞ for x > 0 (2.4)

hold. Then for every c ∈ [0, r] problem (1.1), (1.2) has at least one Kneser
solution.

If system (1.1) has a Kneser solution, then the questions naturally arise: in what
cases are these solutions vanishing at infinity and in what cases are they strongly
Kneser solutions? The following statements answer these questions.
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Theorem 2.2. Let along with (1.4), for every arbitrarily small positive number
x, one of the following three conditions hold:

+∞∫
1

fi∗(t, x) dt = +∞ (i = 1, 2); (2.5)

+∞∫
1

f1∗(t, x) dt < +∞,

+∞∫
1

f2∗

(
t,

+∞∫
t

f1∗(s, x) ds
)
dt = +∞; (2.6)

+∞∫
1

f2∗(t, x) dt < +∞,

+∞∫
1

f1∗

(
t,

+∞∫
t

f2∗(s, x) ds
)
dt = +∞. (2.7)

Then for every c ∈ [0, r] a Kneser solution to problem (1.1), (1.2) is vanishing
at infinity.

Proposition 2.1. For every nontrivial Kneser solution to system (1.1) to be strongly
Kneser solution, it is sufficient that there exist a positive constant ε and a non-
negative function h ∈ Lloc( ]0,+∞[ ) such that the functions f1 and f2 satisfy
the inequality

2∑
i=1

|fi(t, x1, x2)| ≤ h(t)(|x1| + |x2|) for t > 0, |x1| + |x2| ≤ ε.
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Example 2.1. Let

f1(t, x1, x2) ≡ −
(
|x1|λ1 + |x2|λ2

)
,

f2(t, x1, x2) ≡ ℓ0|f1(t, x1, x2)|(1 + |x2|)λ,

where λ1, λ2, λ, and ℓ0 are positive constants. Then

f∗
1 (t, x) ≡ −

(
rλ1 + xλ2

)
, f1∗(t, x) ≡ xλ1, f2∗(t, x) ≡ ℓ0x

λ1,

and system (1.1) has the form

u′
1 = −

(
|u1|λ1 + |u2|λ2

)
, u′

2 = ℓ0
(
|u1|λ1 + |u2|λ2

)
(1 + |u2|)λ. (2.8)

Hence by Theorems 2.1 and 2.2 it follows that if

λ ≤ 1

and c ∈ [0, r], then problem (2.8), (1.2) has at least one vanishing at infinity
Kneser solution.

Assume now that problem (2.8), (1.2) has a Kneser solution also in the case
where

λ > 1.
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Then according to Theorem 2.2 this solution is vanishing at infinity. Thus
+∞∫
0

(
|u1(t)|λ1 + |u2(t)|λ2

)
dt = c,

1 −
(
1 + |u2(0)|

)1−λ

λ − 1
= ℓ0

+∞∫
0

(
|u1(t)|λ1 + |u2(t)|λ2

)
dt = ℓ0c,

and
c <

1

ℓ0(λ − 1)
.

Therefore, no matter how small λ − 1 is, if

r ≥ c ≥
1

ℓ0(λ − 1)
,

then problem (1.1), (1.2) has no Kneser solution.

The above-given example shows that condition (2.2) in Theorem 2.1 cannot be
replaced by the condition

f2(t, x1, x2) ≤ ℓ(t) +
(
ℓ1(t) + ℓ0|f1(t, x1, x2)|

)
(1 + |x2|)1+ε,

no matter how small ε > 0 is.
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Example 2.2. Let

f1(t, x1, x2) ≡ −
(
|x1|λ1 + |x2|λ2

)
,

f2(t, x1, x2) ≡ p(t)x1 + ℓ0|f1(t, x1, x2)||x2|,
where

λ1 ≥ 1, λ2 ≥ 1, ℓ0 ≥ 0,

and p ∈ Lloc( ]0,+∞[ ) is a nonnegative function. Then system (1.1) has the
form

u′
1 = −

(
|u1|λ1 + |u2|λ2

)
, u′

2 = p(t)u1+ ℓ0
(
|u1|λ1 + |u2|λ2

)
|u2|. (2.9)

By Theorem 2.2 and Proposition 2.1, if
a∫

0

( a∫
t

p(s) ds
)λ2

dt < +∞, (2.10)

where a > 0, then for every c > 0 problem (1.1), (1.2) has at least one strongly
Kneser solution.

Assume now that (u1, u2) is a Kneser solution to problem (2.9), (1.2) for some
positive number c. Then, according to Proposition 2.1, this solution is a strongly
Kneser solution and, therefore, for every a > 0 the inequality

u1(t) > δ for 0 < t < a
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holds, where
δ = u1(a) > 0.

On the other hand, almost everywhere on ]0,+∞[ we have
−u′

1(t) > |u2(t)|λ2, |u2(t)|′ = −p(t)u1(t) + ℓ0u
′
1(t)|u2(t)|.

Thus
|u2(t)| = exp

(
ℓ0(u1(t) − δ)

)
|u2(a)|+

a∫
t

exp
(
ℓ0(u1(t) − u1(s))

)
p(s)u1(s) ds > δ

a∫
t

p(s) ds for 0<t<a,

and

c − δ >

a∫
0

|u2(t)|λ2dt > δλ2

a∫
0

( a∫
t

p(s) ds
)λ2

dt.

Therefore, for problem (2.9), (1.2) to have at least one Kneser solution for every
c > 0, it is necessary and sufficient that condition (2.10) be satisfied.

The above-given example shows that condition (2.4) in Theorem 2.1 is unim-
provable.
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Remark 2.1. If c ∈ ]0, r] and
fi(t, x1, x2) ≡ pi(t)|x3−i|λisgn (x3−i) (i = 1, 2),

where
λ1 > 0, λ2 ≥ 1/λ1,

and pi ∈ Lloc( ]0,+∞[ ) (i = 1, 2) are nonnegative functions, then for a
Kneser solution to problem (1.1), (1.2) to be vanishing at infinity, it is necessary
and sufficient that one of the conditions (2.5)–(2.7) be satisfied. Therefore, the
conditions of Theorem 2.2 are unimprovable.
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3. PROBLEM (1.1′), (1.2)

Throughout this section it is assumed that conditions (1.5) are satisfied and c is
an arbitrarily fixed real number.

Theorem 3.1. Let the functions g1 and g2 along with (1.6) satisfy one of the
following two conditions:

+∞∫
1

g1(t, x) dt = +∞ for x > 0; (3.1)

+∞∫
1

g1(t, x)dt<+∞,

+∞∫
1

g2

(
t,

+∞∫
t

g1(s, x)ds
)
dt=+∞ for x>0. (3.2)

Then for problem (1.1′), (1.2) to have a unique Kneser solution for an arbitrarily
fixed real number c, it is necessary and sufficient that the condition

1∫
0

g1

(
t, x +

1∫
t

g2(s, x) ds
)
dt < +∞ for x > 0 (3.3)

be satisfied.
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Remark 3.1. The requirement that one of the conditions (3.1) and (3.2) be ful-
filled in the above-formulated theorem is essential and it cannot be replaced by
the condition

0 <

+∞∫
t

g1(s, x) ds < +∞ for t > 0, x > 0. (3.4)

Indeed, let g2(t, x) ≡ 0, and g1 ∈ Kloc(R+ × R) be a nondecreasing in the
second argument and odd function, satisfying condition (3.4). Then conditions
(1.6) and (3.3) hold but both conditions (3.1) and (3.2) are violated. On the other
hand, for any positive constant c1, satisfying the inequality

+∞∫
0

g1(s, c1) ds < c,

a vector-function (u1, u2) with the components

u1(t) ≡ c −
t∫

0

g1(s, c1) ds, u2(t) ≡ −c1

is a Kneser solution to problem (1.1′), (1.2). Therefore, this problem has an
infinite set of Kneser solutions.
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Remark 3.2. As we have seen, conditions (1.6), (3.1), and (3.3) guarantee the
unique solvability of problem (1.1′), (1.2). On the other hand, these conditions
do not guarantee that a solution of that problem is vanishing at infinity. Indeed,
let g2(t, x) ≡ 0, and the function g1 ∈ Kloc(R+ × R) satisfy conditions (1.6)
and (3.1). Then condition (3.3) is automatically satisfied, and a vector-function
(u1, u2) with the components

u1(t) ≡ c, u2(t) ≡ 0

is a Kneser solution to problem (1.1′), (1.2) which is not vanishing at infinity.

In the next theorem, concerning the fact that a Kneser solution to problem
(1.1′), (1.2) is vanishing at infinity, instead of (3.1) one of the following two
conditions is required:

+∞∫
1

gi(t, x) dt = +∞ (i = 1, 2); (3.5)

+∞∫
1

g2(t, x)dt<+∞,

+∞∫
1

g1

(
t,

+∞∫
t

g2(s, x)ds
)
dt=+∞ for x>0. (3.6)
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Theorem 3.2. Let the functions g1 and g2 along with conditions (1.6) and (3.3)
satisfy one of the conditions (3.2), (3.5), and (3.6). Then problem (1.1′), (1.2)
has a unique Kneser solution and this solution is vanishing at infinity.

The particular cases of problem (1.1′), (1.2) are the Emden–Fowler type dif-
ferential system

u′
1 = p1(t)|u2|λ1sgn (u2), u′

2 = p2(t)|u1|λ2sgn (u1) (3.7)
with the initial condition (1.2), and the differential equations

u′′ = p(t)|u|λsgn (u), (3.8)
u′′ = f(t, u) (3.9)

with the initial condition
lim
t→a

u(t) = c. (3.10)

Here λ1, λ2, and λ are positive constants,
p1 ∈ Lloc(R+), p2 ∈ Lloc( ]0,+∞[ ), p ∈ Lloc( ]0,+∞[ )

are nonnegative functions, and
f ∈ Kloc( ]0,+∞[×R)

is a nondecreasing in the second argument and odd function.
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Theorems 3.1 and 3.2 imply the following statements.

Corollary 3.1. Let c ̸= 0. For problem (3.7), (1.2) to have a unique Kneser
solution, it is necessary and sufficient that the functions p1 and p2 satisfy the
condition

1∫
0

p1(t)
( 1∫

t

p2(s) ds
)λ1

dt < +∞, (3.11)

as well as one of the following two conditions:
+∞∫
1

p1(t) dt = +∞, (3.12)

+∞∫
1

p1(t) dt < +∞,

+∞∫
1

p2(t)
( +∞∫

t

p1(s) ds
)λ2

dt = +∞. (3.13)
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Corollary 3.2. Let c > 0. Then for problem (3.7), (1.2) to have a vanishing
at infinity Kneser solution, it is sufficient and in the case λ1λ2 ≥ 1 it is also
necessary that the functions p1 and p2 along with condition (3.11) satisfy either
condition (3.13) or one of the following two conditions:

+∞∫
1

pi(t) dt = +∞ (i = 1, 2); (3.14)

+∞∫
1

p2(t) dt < +∞,

+∞∫
1

p1(t)
( +∞∫

t

p2(s) ds
)λ1

dt = +∞. (3.15)

Corollary 3.3. For problem (3.8), (3.10) to have a unique Kneser solution, it is
necessary and sufficient that the function p satisfy the condition

1∫
0

t p(t) dt < +∞. (3.16)
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Corollary 3.4. For problem (3.8), (3.10) to have a vanishing at infinity unique
Kneser solution, it is sufficient and in the case λ ≥ 1 it is also necessary that
along with condition (3.16) the following condition

+∞∫
1

t p(t) dt = +∞ (3.17)

be satisfied.

As an example, we consider the Fermi–Thomas type differential equation
u′′ = p0(t)t

−α|u|λsgn (u), (3.18)
where α and λ are positive constants, and p0 : R+ → ]0,+∞[ is a measurable
bounded function, far from zero.

Corollaries 3.3 and 3.4 imply

Corollary 3.5. For problem (3.18), (3.10) to have a vanishing at infinity unique
Kneser solution, it is necessary and sufficient that the inequality

α < 2

be satisfied.
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As we have already noted, Fermi and Thomas considered the case, where

p0(t) ≡ 1, α =
1

2
, λ =

3

2
.

The last result of our report concerns problem (3.9), (3.10) and generalizes the
above Kneser Theorem 1.1 in the case, where the function f has a non-integrable
singularity in the time variable at the point t = 0.

Corollary 3.6. For problem (3.9), (3.10) to have a unique Kneser solution for
every c > 0, it is necessary and sufficient that the condition

1∫
0

t f(t, x) dt < +∞ for x > 0

be satisfied. If along with this condition the following condition
+∞∫
1

t f(t, x) dt = +∞

holds, then that Kneser solution is vanishing at infinity.
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