Disconjugacy Of The Fourth Order Ordinary Differential Equations And Boundary Value Problems

Mariam Manjikashvili

Ilia State University

Consider on the interval I := [a, b] the fourth order ordinary differential equations

$$u^{(4)}(t) = p(t)u(t) + q(t), (1)$$

and

$$u^{(4)}(t) = p(t)u(t) + f(t, u(t)), (2)$$

under the boundary conditions

$$u^{(j)}(a) = 0, \quad u^{(j)}(b) = 0 \quad (j = 0, 1),$$
 (3₁)

$$u^{(j)}(a) = 0 \ (j = 0, 1, 2), \quad u(b) = 0,$$
 (3₂)

where $p \in L(I; R), f \in K(I \times R; R)$.

My talk contains results from the following paper:

M. Manjikashvili, S. Mukhigulashvili, two-point Boundary value Problems For 4th Order Ordinary Differential Equations. Miskolc Mathematical Notes, Vol. 25, No. 1, 2024, pp. 399–409,

First of all, I will talk about some results from the works:

- 1. M. Manjikashvili, S. Mukhigulashvili, Necessary And Sufficient Conditions Of Disconjugacy For The Fourth Order Linear Ordinary Differential Equations. Bull. math. Soc. Sci. Math. Romanie 64(112) No.4, 2021, pp 341-353,
- 2. E. Bravyi, S. Mukhigulashvili, On Solvability of Two-Point Boundary Value Problems with Separating Boundary Conditions for Linear Ordinary Differential Equations and Totally Positive Kernels, International Workshop QUALITDE 2020, December 19 21, 2020, Tbilisi, Georgia.

Linear Problem

Definition1. Equation

$$u^{(4)}(t) = p(t)u(t) \quad \text{for} \quad t \in I$$

is said to be disconjugate (non-oscillatory) on I, if every nontrivial solution u has less then four zeros on I, the multiple zeros being counted according to their multiplicity.

D e f i n i t i o n 2. A continuous function $G:[a,b]\times[a,b]\to R$ is called a totally positive kernel if all determinants

$$\begin{vmatrix} G(t_1, t_1) & G(t_1, t_2) & \dots & G(t_1, t_k) \\ G(t_2, t_1) & G(t_2, t_2) & \dots & G(t_2, t_k) \\ \dots & \dots & \dots & \dots \\ G(t_k, t_1) & G(t_k, t_2) & \dots & G(t_k, t_k) \end{vmatrix}$$

are positive for all ordered sets of points $a < t_1 < \cdots < t_k < b$ for all $k \in N$.

For us the following main property of totally positive kernels is important:

Proposition 1. (Karlin – Gantmacher – Krein)

Let $G:[a,b]\times[a,b]\to R$ be a totally positive kernel, $r\in L(I,R_0^+)$, and the operator $T:C(I,R)\to C(I,R)$ is defined by the equality

$$T(x)(t) = \int_a^b G(t,s)r(s)x(s)ds.$$
 (5)

Then the spectrum of the operators T is a subset of the set $[0, +\infty[$.

Therefore, all characteristic values λ of the equation

$$x(t) = \lambda \int_{a}^{b} G(t, s) r(s) x(s) ds$$
 (6)

are positive and if $\lambda < 0$, then the last equation has only the trivial solution.

Now if we consider equations

$$u^{(4)}(t) = [p(t)]_{+}u(t), (7)$$

$$u^{(4)}(t) = -[p(t)]_{-}u(t), \tag{8}$$

where $[p]_{-}$ and $[p]_{+}$ are respectively negative and positive parts of the coefficient p, and rewrite equation (4) in a form

$$u^{(4)}(t) = [p(t)]_{+}u(t) - [p(t)]_{-}u(t), \tag{9}$$

then due to the representations

$$u(t) = -\int_a^b G_+(t,s)[p(s)]_- u(s) ds$$
 and $u(t) = \int_a^b G_-(t,s)[p(s)]_+ u(s) ds$

where G_+ is Green's function of problem (7), (3₁) or (7), (3₂) and G_- is Green's function of problem (8), (3₁) or (8), (3₂), the last proposition can be translated as a following:

Proposition 2.

- **a.** If $G_+:[a,b]\times[a,b]\to R$ is Green's function of problem (7), (3₁) ((7), (3₂)), and G_+ is a totally positive kernel, then problem (9), (3₁) ((9), (3₂)) is uniquely solvable for an arbitrary $[p]_-$.
- **b.** If $G_-:[a,b]\times[a,b]\to R$ is Green's function of problem (8), (3₁) ((8), (3₂)), and $-G_-$ is a totally positive kernel, then problem (9), (3₁) ((9), (3₂)) is uniquely solvable for an arbitrary $[p]_+$.

Proposition 3. (Gantmacher-Krein)

Let $i \in \{1,2\}$, $p \in L(I,R)$ be such that equation $u^{(4)} = pu$ is disconjugate on I, and G is Green's function of problem $u^{(4)} = pu$, (3_i) . Then

$$(-1)^{i-1}G$$

is the **totally positive kernel**.

Last two propositions result in the main theorem of the work:

2. E. Bravyi, S. Mukhigulashvili, On Solvability of Two-Point Boundary Value Problems with Separating Boundary Conditions for Linear Ordinary Differential Equations and Totally Positive Kernels, International Workshop QUALITDE – 2020, December 19 – 21, 2020, Tbilisi, Georgia.

Theorem 1.

a. Let the equation

$$u^{(4)}(t) = [p(t)]_{+}u(t)$$

be disconjugate on I. Then problem (1), (3₁) is uniquely solvable for arbitrary $[p]_-$ and q. **b.** Let the equation

$$u^{(4)}(t) = -[p(t)]_{-}u(t)$$

be disconjugate on I. Then problem (1), (3₂) is uniquely solvable for arbitrary $[p]_+$ and q.

For the formulation of the results we need the following two definitions of classes $D_+(I)$ and $D_-(I)$.

D e f i n i t i o n 3. We will say that $p \in D_+(I)$ if $p \in L(I; R_0^+)$, and problem (4), (3₁) has a solution u such that

$$u(t) > 0 \text{ for } t \in]a, b[. \tag{10}$$

D e f i n i t i o n 4. We will say that $p \in D_{-}(I)$ if $p \in L(I; R_0^-)$, and problem (4), (3₂) has a solution u such that inequality (10) holds.

T h e o r e m 2. Let $p \in L(I; R_0^+)$. Then for the discojugacy of the equation

$$u^{(4)}(t) = p(t)u(t) (4)$$

on I it is **necessary and sufficient** the existence of $p^* \in D_+(I)$, such that

$$p(t) \preccurlyeq p^*(t) \quad \text{for} \quad t \in I.$$
 (12)

The inequality $x \preccurlyeq y$ means that $x \leq y$ and $x \not\equiv y$.

Proof. Here we need two definitions of points $\eta(x,p)$ and $\tau(x,p)$.

D e f i n i t i o n 5. Let $t_0 \in R_0^+$, and $F(t_0, p_1)$ be the set of such $t_1 > t_0$ for which some solutions of equation

$$u^{(4)}(t) = p_1(t)u(t) \text{ for } t \in R_0^+,$$
 (13)

in the interval $[t_0, t_1]$ have at least 4 zeroes (according to their multiplicities). Then we will say that for equation (13), $\eta(t_0, p_1) = \inf F(t_0, p_1)$ is the first conjugate point to t_0 .

D e f i n i t i o n 6. Let $t_0 \in R_0^+$, and $E(t_0, p_1)$ be the set of such $t_1 > t_0$ for which there exists a solution u of equation (13) such that

$$u(t_0) = u(t_1) = 0, \ u(t) > 0 \text{ for } t \in]t_0, t_1[.$$

Then $\tau(t_0, p_1) = \sup E(t_0, p_1)$.

For an arbitrary function $x:[a,\ b]\to R$, we introduce the functions $x_+:R_0^+\to R$ by the equality

$$x_{+}(t) = \begin{cases} x(t) & \text{for } t \in I\\ 1 & \text{for } t \in R_0^+ \setminus I \end{cases}$$
 (15)

If $p \equiv 0$, then the validity of our theorem is trivial, therefore assume that $p \not\equiv 0$. From our condition $p(t) \preccurlyeq p^*(t)$, by the following two Lemmas from the monograph:

I. Kiguradze, T. Chanturia, Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations, Kluwer Academic, Dordrecht (1993).

L e m m a 1. Assume that $p_1 \geq 0$. Then for an arbitrary $t_0 \in R_0^+$ the equality

$$\tau(t_0, p_1) = \eta(t_0, p_1)$$

holds.

L e m m a 2. Let $p_1(t) \ge p_2(t) \ge 0$ for $t \in R_0^+$. Then for an arbitrary $t_0 \in R_0^+$ the inequality $\tau(t_0, p_1) < \tau(t_0, p_2)$

holds.

we obtain

$$\eta(a, p_+) = \tau(a, p_+) \ge \tau(a, p_+^*) = \eta(a, p_+^*),$$

where due to the inclusion $p^* \in D_+(I)$ by following lemma:

L e m m a 3. (M.Manjikashvili, S.Mukhigulashvili) The following assertions are equivalent: $A. p \in D_+(I)$; $B. \eta(a, p_+) = b$.

we have $\eta(a, p_+^*) = b$, and therefore

$$\eta(a, p_+) \ge b. \tag{16}$$

But the condition $p^* \in D_+(I)$ implies, that the problem

$$u^{(4)}(t) = p_{+}^{*}(t)u(t) \text{ for } t \in I, \ u^{(i)}(a) = 0, \ u^{(i)}(b) = 0 \ (i = 0, 1),$$
 (17)

has a solution u positive in a, b.

Now **assume** that $\eta(a, p_+) = b$, then from Lemma

L e m m a 4. Let $p_1 \ge 0$. Then there exist a solution u of equation (13) positive on $]a, \eta(a, p_1)[$ such, that

$$u^{(i-1)}(a) = 0 u^{(i-1)}(\eta(a, p_1)) = 0 (i = \overline{1, 2}). (18)$$

follows that the problem

$$v^{(4)}(t) = p_{+}(t)v(t)$$
 for $t \in I$, $v^{(i)}(a) = 0$, $v^{(i)}(b) = 0$ $(i = 0, 1)$, (19)

has a solution v positive in a, b. Now if we multiply equations (17) and (19) respectively by v and -u, and integrate their sum from a to b, in view of boundary conditions (17) and (19), by integration by parts we obtain equality

$$\int_{a}^{b} (p^{*}(s) - p(s))u(s)v(s)ds = \int_{a}^{b} (u^{(4)}(s)v(s) - u(s)v^{(4)}(s))ds = 0,$$

which contradicts with our conditions:

$$p(t) \leq p^*(t)$$
, and u, v are positive in a, b .

Thus our assumption is invalid and due to (16) we have

$$\eta(a, p_+) > b. \tag{20}$$

Now **assume that equation** (4) **is oscillatory on** I, i.e., it has a solution u with at least four zeroes in [a, b]. Therefore if $t_0 \in [a, b[$ is the first zero of u, it is clear that $\eta(t_0, p_+) \in]t_0, b]$, and then due to (20) we get

$$\eta(t_0, p_+) < \eta(a, p_+),$$

and therefore $t_0 > a$. On the other hand due to Lemma from the paper

G. Johnson, The k-th conjugate point function for an even order linear differential equation, *Proc. Amer. Math. Soc.*, 42, 563-568 (1974).

L e m m a 5. Let $p_1 \ge 0$, and $t_1 > t_2 > 0$. Then

$$\eta(t_1, p_1) > \eta(t_2, p_1).$$

in view the fact that $t_0 > a$, it follows the inequality

$$\eta(t_0, p_+) > \eta(a, p_+),$$

which is the contradiction with the previous inequality. Therefore our assumption is invalid and equation (4) is disconjugate on I.

Let $\lambda_1 > 0$ be the first eigenvalue of the problem

$$u^{(4)}(t) = \lambda^4 u(t), \ u^{(j)}(0) = 0, \ u^{(j)}(1) = 0 \ (j = 0, 1),$$
 (21)

then $\frac{\lambda_1^4}{(b-a)^4} \in D_+(I)$, and it is well known that approximately

$$\lambda_1 \approx 4.73004$$
.

Therefore from Theorem 2 we obtain effective and unimprovable condition of disconjugacy:

\boldsymbol{C} \boldsymbol{o} \boldsymbol{r} \boldsymbol{o} \boldsymbol{l} \boldsymbol{l} \boldsymbol{a} \boldsymbol{r} \boldsymbol{y} 1. Equation (4) is disconjugate on \boldsymbol{l} if

$$0 \le p(t) \preccurlyeq \frac{\lambda_1^4}{(b-a)^4} \quad \text{for} \quad t \in I, \tag{22}$$

and is oscillatory on I if

$$p(t) \ge \frac{\lambda_1^4}{(b-a)^4} \quad \text{for} \quad t \in I. \tag{23}$$

Even if both conditions (22) and (23) are violated, the question on the disconjugacy of equation $u^{(4)} = pu$ can be answered by the following theorem:

T h e o r e m 3. Let $p \in L(I; R_0^+)$, and there exists $M \in R_0^+$ such that

$$M\frac{b-a}{2} + \int_{a}^{b} [p(s) - M]_{+} ds \le \frac{192}{(b-a)^{3}}.$$
 (24)

Then equation (4) is disconjugate on I.

We have the example of such a coefficient p, that for $M \in]0$, $\operatorname{ess\,sup} p[$ condition (24) holds but it is violated if $M = \operatorname{ess\,sup} p$ and M = 0.

T h e o r e m 4. Let $p \in L(I; R_0^-)$. Then for dsconjugacy of equation (4) on I it is necessary and sufficient the existence of $p_* \in D_-(I)$, such that

$$p_*(t) \preccurlyeq p(t) \quad \text{for} \quad t \in I.$$
 (25)

Let $\lambda_2 > 0$ be the first eigenvalue of the problem

$$u^{(4)}(t) = \lambda^4 u(t), \ u^{(j)}(0) = 0 \ (j = 0, 1, 2), \ u(1) = 0,$$
 (26)

then $-\frac{\lambda_2^4}{(b-a)^4} \in D_-(I)$, and it is well known that approximately

$$\lambda_2 \approx 5.553$$
.

Therefore from Theorem 4 we obtain effective and unimprovable condition of disconjugacy:

C o r o l l a r y 2. Equation (4) is disconjugate on I if

$$-\frac{\lambda_2^4}{(b-a)^4} \preccurlyeq p(t) \le 0 \quad \text{for} \quad t \in I, \tag{27}$$

and is oscillatory on I if

$$p(t) \le -\frac{\lambda_2^4}{(b-a)^4} \quad \text{for} \quad t \in I. \tag{28}$$

Even if both conditions (27) and (28) are violated, the question on the disconjugacy of equation (4) can be answered by the following theorem:

T h e o r e m 5. Let $p \in L(I; R_0^-)$, and there exists $M \in R_0^+$ such that

$$M\frac{495}{1024}(b-a) + \int_{a}^{b} [p(s) + M]_{-} ds \le \frac{110}{(b-a)^{3}}.$$
 (29)

Then equation (4) is disconjugate on I.

The theorems 1, 2 and 4, result in the following theorem of the solvability of problems (1), (3_i) (i=1,2) from our last paper:

T h e o r e m 6. Let $i \in \{1,2\}$ and the function $p_0 \in L(I;R)$ be such that the equation

$$u^{(4)}(t) = [p_0(t)]_+ u(t)$$
 if $i = 1$,

$$u^{(4)}(t) = -[p_0(t)]_- u(t)$$
 if $i = 2$,

is diconjugate on I. Then if the inequality

$$(-1)^{i-1}[p(t) - p_0(t)] \le 0$$
 for $t \in I$ (30)

holds, problem (1), (3_i) is uniquely solvable.

Proof. Let i=1, then from Theorem 2 in view of disconjugacy of the equation $u^{(4)}=[p_0]_+u$, it follows the exitance of $p^* \in D^+(I)$ such that

$$[p_0]_+ \preccurlyeq p^*.$$

On the other hand from condition (30) we have

$$[p]_+ \leq [p_0]_+,$$

and therefore from the last two inequalities we get the inequality

$$[p]_+ \preccurlyeq p^*$$
.

Then due to last inequality, Theorem 2 guarantees the disconjugacy of the equation $u^{(4)} = [p]_+ u$, and therefore the solvability of the problem (1), (3₁) follows from the Theorem 1.

For i = 2, the proof is analogous and follows from Theorem 4.

From the last theorem with $p_0 = [p]_+$ by Theorem 2 follows:

C o r o l l a r y 3. Let there exist $p^* \in D_+(I)$ such that the inequality

$$[p(t)]_+ \preccurlyeq p^*(t) \quad \text{for} \quad t \in I \tag{31_1}$$

holds. Then problem (1), (3_1) is uniquely solvable.

Analogously, from the last theorem with $p_0 = -[p]_-$ by Theorem 4 follows:

C o r o l l a r y 4. Let there exists $p_* \in D_-(I)$ such that the inequality

$$-[p(t)]_{-} \succcurlyeq p_{*}(t) \quad \text{for} \quad t \in I \tag{31}_{2}$$

holds. Then problem (1), (3_2) is uniquely solvable.

R e m a r k 2. Condition (31₁) ((31₂)) in Corollary 3 (4) is optimal in the sense that the inequality $\leq (\geq)$.

Now if we take into account the fact that $\frac{\lambda_1^4}{(b-a)^4} \in D_+(I)$ and $-\frac{\lambda_2^4}{(b-a)^4} \in D_-(I)$ (where $\lambda_1^4 \approx 500$ and $\lambda_2^4 \approx 949$,) then from the last two corollaries follows that the condition

$$p(t) \le \frac{500}{(b-a)^4} \left([p(t)]_- \le \frac{949}{(b-a)^4} \right),$$
 (32)

guarantees the solvability of problem (1), (3_1) ((1), (3_2)).

Nonlinear Problem

Now we consider the nonlinear fourth order ordinary differential equation

$$u^{(4)}(t) = p(t)u(t) + f(t, u(t)), (34)$$

under the boundary conditions

$$u^{(j)}(a) = 0, \quad u^{(j)}(b) = 0 \quad (j = 0, 1),$$
 (35₁)

$$u^{(j)}(a) = 0 \ (j = 0, 1, 2), \quad u(b) = 0.$$
 (35₂)

T h e o r e m 7. Let $i \in \{1, 2\}$ and there exist $r \in R^+$ and $g \in L(I; R_0^+)$ such that a. e. on I the inequality

$$-g(t)|x| \le (-1)^{i-1} f(t,x) \operatorname{sgn} x \le \delta(t,|x|) \text{ for } |x| > r$$
 (36_i)

holds, where the function $\delta \in K(I \times R_0^+; R_0^+)$ is nondecreasing in the second argument and

$$\lim_{\rho \to +\infty} \frac{1}{\rho} \int_a^b \delta(s, \, \rho) ds = 0. \tag{37}$$

Then if the equation

$$u^{(4)}(t) = [p(t)]_{+}u(t)$$
 if $i = 1$, $u^{(4)}(t) = -[p(t)]_{-}u(t)$ if $i = 2$,

is disconjugate, problem (34), (35_i) has at least one solution.

As we said the inequality $p(t) \leq 500/(b-a)^4$ guarantees the disconjugacy of the equation $u^{(4)}(t) = [p(t)]_+ u(t)$ if i = 1, and therefore from the last theorem we have:

C o r o l l a r y 7. Let there exist $r \in R^+$ and $g \in L(I; R_0^+)$ such that a. e. on I the inequality

$$-g(t)|x| \le f(t,x)\operatorname{sgn} x \le \delta(t,|x|) \quad \text{for} \quad |x| > r \tag{39}$$

holds, where the function δ admits to the conditions of the Theorem 7. Then if inequality

$$p(t) \le \frac{500}{(b-a)^4},\tag{40}$$

holds, problem (34), (35_1) has at least one solution.

Now let compare this last corollary with Ivane Kiguradze's following theorem:

T h e o r e m 8. (I. Kiguradze) Let the function $h \in L(I; R_0^+)$ be such that a. e. on I the inequality

$$f(t,x)\operatorname{sgn} x \le h(t) \quad \text{for} \quad x \in R$$
 (41)

holds, and

$$p(t) \le \frac{\pi^4}{(b-a)^4} \approx \frac{97}{(b-a)^4}. (42)$$

Then problem (34), (35_1) has at least one solution.

The following theorems of the uniqueness of the solution for our nonlinear problem which can be proved on the basis of comparison theorems 2 and 4.

T h e o r e m 9. Let there exists $p^* \in D_+(I)$ such that a. e. on I the inequality

$$[f(t,x_1) - f(t,x_2)]\operatorname{sgn}(x_1 - x_2) < [p^*(t) - p(t)]|x_1 - x_2| \tag{43_1}$$

hold for $x_1, x_2 \in R$, $x_1 \neq x_2$. Then problem (34), (35₁) has at most one solution.

T h e o r e m 10. Let there exists $p_* \in D_-(I)$ such that a. e. on I the inequality

$$[f(t,x_1) - f(t,x_2)]\operatorname{sgn}(x_1 - x_2) > [p_*(t) - p(t)]|x_1 - x_2| \tag{43}_2$$

hold for $x_1, x_2 \in R$, $x_1 \neq x_2$. Then problem (34), (35₂) has at most one solution.

Thank you for your attention