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Introduction

The motion of small amplitude waves of a water layer with variable depth along the x-axis is
described by the equations of the shallow water theory

on 1o} ou on
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where
o 7(z,t) is the vertical water surface elevation
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Introduction

The motion of small amplitude waves of a water layer with variable depth along the x-axis is
described by the equations of the shallow water theory
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where
o 7(z,t) is the vertical water surface elevation

o u(z,t) is the depth-averaged water flow velocity (also called wave velocity)
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The motion of small amplitude waves of a water layer with variable depth along the x-axis is
described by the equations of the shallow water theory
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where
o 7(z,t) is the vertical water surface elevation

o u(z,t) is the depth-averaged water flow velocity (also called wave velocity)

o h(z) is the unperturbed water depth
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Introduction

The motion of small amplitude waves of a water layer with variable depth along the x-axis is
described by the equations of the shallow water theory

on 1o} ou on
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where
o 7(z,t) is the vertical water surface elevation
o u(z,t) is the depth-averaged water flow velocity (also called wave velocity)
o h(z) is the unperturbed water depth
o g is the gravity acceleration (we assume without loss of generality that g = 1)
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Introduction

The motion of small amplitude waves of a water layer with variable depth along the x-axis is

described by the equations of the shallow water theory

on 1o} ou on
EJra[h(w)u]:O, E+g£:0,
where
o 7(z,t) is the vertical water surface elevation
o u(z,t) is the depth-averaged water flow velocity (also called wave velocity)
o h(z) is the unperturbed water depth
o g is the gravity acceleration (we assume without loss of generality that g = 1)

1

The shallow water equations conform a system of coupled PDEs of first order that can be easily

decoupled into a single wave equation for the water flow velocity

0%, 62

@*@[ (z)u] =0,
or for the surface elevation )

8%n 1o} 077}

— — — |h(z)—| =0

a2~ 8 [ @) 2e

)
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Introduction

The water flow velocity equation:

0%y 02

ol [h(z)u] =0, (2
The surface elevation equation:

627]

®3)

Q"Q)
—
,E’:
v
._;
o

Czech-Georgian Workshop Brno, July 2-4, 2024

R. Hakl Periodic Travelling Waves 3/17



Introduction

The water flow velocity equation:

0%y 02

ol [h(z)u] =0, (2
The surface elevation equation:

8%n 15} on

— — — |h(z)—| =0. 3

82 oz [ (”)am} 3

A travelling wave is a special solution of the form
a(z) exp (i[wt — ¥(2)] ),

where both g and ¥ are scalar real-valued functions.
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Introduction

The water flow velocity equation:

0%y 02

o~ o [h(e)ul = 0,

The surface elevation equation:

On_2 [h(m)g—Z} —o.

at2 8z
A travelling wave is a special solution of the form

a(e) exp (i wt — ¥(z)]),

where both g and ¥ are scalar real-valued functions. In the related literature,

o g(z) is known as the amplitude of the travelling wave

o w is the frequency
o ¥(z) is the phase
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Introduction

The water flow velocity equation:

0%y 02

ol [h(z)u] =0, (2
The surface elevation equation:

8%n 15} on

— — — |h(z)—| =0. 3

82 oz [ (”)am} 3

A travelling wave is a special solution of the form
a(z) exp (i[wt — ¥(2)] ),

where both g and ¥ are scalar real-valued functions. In the related literature,
o g(z) is known as the amplitude of the travelling wave
o w is the frequency

o ¥(z) is the phase

The inverse problem:
Given a prescribed amplitude g(z), can we determine a suitable bottom profile h(z) allowing the
equation to admit a travelling wave with amplitude g(z)?
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Water Flow Velocity Eq.

C’,;: will denote the space of continuous scalar T-periodic functions with positive values.
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Water Flow Velocity Eq.

C’,;: will denote the space of continuous scalar T-periodic functions with positive values.
Given a fixed ¢ € CH, we wonder if there exists h € C’; such that Eq.

0%y 62

oy~ o [h(e)ul = 0, @
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Water Flow Velocity Eq.

C’,;: will denote the space of continuous scalar T-periodic functions with positive values.
Given a fixed ¢ € CH, we wonder if there exists h € C’; such that Eq.
0%y 82

oy~ o [h(e)ul = 0, @

has a travelling wave
u(z,t) = g(z) exp (z [wt — ¥(z)] )
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Water Flow Velocity Eq.
C’,;: will denote the space of continuous scalar T-periodic functions with positive values.
Given a fixed ¢ € CH, we wonder if there exists h € C’; such that Eq.

0%y 62

oy~ o [h(e)ul = 0, @

has a travelling wave
u(z,t) = g(z) exp (z [wt — ¥(z)] )

(hg)" +w?q — hq¥'? =0, (4)

2(hq)' ¥’ + hq¥" = 0. (5)
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Water Flow Velocity Eq.

C’,;: will denote the space of continuous scalar T-periodic functions with positive values.
Given a fixed ¢ € CH, we wonder if there exists h € C’; such that Eq.

2u 2
O~ o ()] =0, @

has a travelling wave
u(z,t) = g(z) exp (z [wt — ¥(z)] )

(hg)" +w?q — hq¥'? =0, (4)

2(hq)' ¥’ + hq¥" = 0. (5)

From (5), we deduce that [(hq)z\I”]/ =0, and (hq)?¥' is a conserved quantity.
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Water Flow Velocity Eq.

C’,;: will denote the space of continuous scalar T-periodic functions with positive values.
Given a fixed ¢ € CH, we wonder if there exists h € C’; such that Eq.

0%y 62

oy~ o [h(e)ul = 0, @

has a travelling wave
u(z,t) = g(z) exp (z [wt — ¥(z)] )

(hg)" +w?q — hq¥'? =0, (4)

2(hq)' ¥’ + hq¥" = 0. (5)

From (5), we deduce that [(hq)z\I”]/ =0, and (hq)?¥' is a conserved quantity. This means that
there exists o € R such that

[h(z)g(2)]? ¥'(z) = e, vz € R. (6)
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Water Flow Velocity Eq.

C’,;: will denote the space of continuous scalar T-periodic functions with positive values.
Given a fixed ¢ € CH, we wonder if there exists h € C’; such that Eq.

0%y 62

oy~ o [h(e)ul = 0, @

has a travelling wave
u(z,t) = g(z) exp (z [wt — ¥(z)] )

(hg)" +w?q — hq¥'? =0, (4)

2(hq)' ¥’ + hq¥" = 0. (5)

From (5), we deduce that [(hq)z\I”]/ =0, and (hq)?¥' is a conserved quantity. This means that
there exists o € R such that

[h(2)q(2)]* ¥'(2) = o, vz € R. (6)
Now, we insert (6) into (4) and arrive to a single second order ODE

2

(ha)" + w?q = (,‘j? ()
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Water Flow Velocity Eq.

(ha)" +wPg = ™

hg)' +wq= —— 7
(hq)®

Theorem 1

There exists a solution h € qu of (7) for any ¢ # 0, w # 0. J
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Water Flow Velocity Eq.

(ha)" +wPg = ™

hg)' +wq= —— 7
(hq)®

Theorem 1

There exists a solution h € C; of (7) for any ¢ # 0, w # 0. J

Proof. By introducing the change of variables y = hg into (7), we get the equation

a?

yll + w2q = —.
Y
Now, the result is a direct consequence of Theorem 3.12 in

[LS] A.C. Lazer, S. Solimini, On periodic solutions of nonlinear differential equations with
singularities, Proc. American Math. Society 99, No. 1, 1987.
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Surface Elevation Eq.

Given a fixed ¢ € CH . the problem is to find h € C’;’: such that Eq.

2
] ®
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Surface Elevation Eq.

Given a fixed ¢ € CH . the problem is to find h € C’;’: such that Eq.

8%n 1o} on
W os M@ge] =0 (3

has a travelling wave of the form

n(z.t) = q(z) exp (i lwt - ¥ (a)]).
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Surface Elevation Eq.

Given a fixed ¢ € CH . the problem is to find h € C’;’: such that Eq.

8%n 1o} on
W os M@ge] =0 (3

has a travelling wave of the form

n(z,t) = q(z) exp (7,' [wt — ¥(z)] )
(he')' + w?q — hq¥"” =0, (®)

(hg¥") + hg'¥ =o0. 9)
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Surface Elevation Eq.

Given a fixed ¢ € CH . the problem is to find h € C’;’: such that Eq.

2
] ®

has a travelling wave of the form

n(z,t) = q(z) exp (7,' [wt — ¥(z)] )
(he')' + w?q — hq¥"” =0, (®)

(hg¥") + hg'¥ =o0. 9)

Now, the conserved quantity coming from (9) is

h(z)q(2)?¥'(z) = a, vz € R.
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Surface Elevation Eq.

Given a fixed ¢ € CH . the problem is to find h € C’;’: such that Eq.

8%n 1o} on
W os M@ge] =0 (3

has a travelling wave of the form

n(z,t) = q(z) exp (7,' [wt — ¥(z)] )
(he')' + w?q — hq¥"” =0, (®)

(hg¥') + hq'¥ = 0. (9)
Now, the conserved quantity coming from (9) is
h(z)q(2)?¥'(z) = a, vz € R.
Using this information in (8), we arrive at the equation
2

he') 4 wlq = 2. 10
(hq')" + wq ye (10)
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Surface Elevation Eq.

We assume that g(z) is a T-periodic and positive function of class C'? with a finite number of
critical points in [0,T], all of them non-degenerate, that is, if ¢’(z) = 0 then ¢”(z) # 0. Under
this assumption, we can divide the interval [0, T] into subintervals [a, b] such that ¢'(z) is of a
constant sign on (a,b) and ¢’(a) = ¢’(b) = 0. Then, the substitution

u(z) = W for z € (a,b) (11)
transforms )
(he') +w?q = ¥ (10)
into the equation
24/(g
w'(z) = Aqf(i)) ~g(z)sgn(q')y/2u(z)  for z € (a,b), (12)

where A = a/w?.
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Surface Elevation Eq.

We consider an interval [a, 4] such that ¢ € C? ([a,b];R) satisfies

g(z) >0 for z C[a,b], ¢'(a)=0, ¢'() =0, ¢ (z)>0 for z¢c(a,b). (13)

and
g"(a) >0, g"(v) < 0. (14)

Czech-Georgian Workshop Brno, July 2-4, 2024

R. Hakl Periodic Travelling Waves 8/17



Surface Elevation Eq.

We consider an interval [a, 4] such that ¢ € C? ([a,b];R) satisfies

g(z) >0 for z C[a,b], ¢'(a)=0, ¢'() =0, ¢ (z)>0 for z¢c(a,b). (13)

and
g"(a) >0, g"(v) < 0. (14)

In such an interval, eq. (12) reads as

/ - )\Qq’(:c) -
wle) = a3(z)

g(z)+/2u(z) for z € (a,b). (15)
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Surface Elevation Eq.

We consider an interval [a, 4] such that ¢ € C? ([a,b];R) satisfies

g(z) >0 for z C[a,b], ¢'(a)=0, ¢'() =0, ¢ (z)>0 for z¢c(a,b). (13)

and
g"(a) >0, g"(v) < 0. (14)

In such an interval, eq. (12) reads as

/ - )\Qq’(:c) -
wle) = a3(z)

For technical reasons, we are going to embed this equation into

g(z)+/2u(z) for z € (a,b). (15)

_ Xq'(z)
a3(=)

Obviously, non-negative solutions of (15) and (16) are the same.

w/(2)

— gq(z)+/2|u(z)|sgnu(z) for z € [a,b]. (16)
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Surface Elevation Eq.

We consider an interval [a, 4] such that ¢ € C? ([a,b];R) satisfies
g(z) >0 for z C[a,b], ¢'(a)=0, ¢'() =0, ¢ (z)>0 for z¢c(a,b). (13)

and
g"(a) >0, g"(v) < 0. (14)

In such an interval, eq. (12) reads as

/ - >\2q’(:c) -
wle) = a3(z)

For technical reasons, we are going to embed this equation into

g(z)+/2u(z) for z € (a,b). (15)

_ Xq'(z)
a3(=)

Obviously, non-negative solutions of (15) and (16) are the same.
A solution to (16) is understood in the classical sense, that is, a function u € C* ([a,b};R)

satisfying (16) for every z € [a,b]. We will investigate the properties of a solution to (16) subject
to the initial condition

w/(2)

— gq(z)+/2|u(z)|sgnu(z) for z € [a,b]. (16)

u(a) = 0. (17)
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Surface Elevation Eq.

u'(z) = A4 (2) —g(z)+/2|u(z)| sgn u(z) for z € [a,b], (16)

a3(z)

u(a) = 0. (17)

Czech-Georgian Workshop Brno, July 2-4, 2024

R. Hakl Periodic Travelling Waves 9/17



Surface Elevation Eq.

u'(z) = A4 (2) —g(z)+/2|u(z)| sgn u(z) for z € [a,b], (16)

7*(z)
u(a) = 0. (17)

QUESTIONS:
@ When u(b) =07
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Surface Elevation Eq.

u'(z) = A4 (2) —g(z)+/2|u(z)| sgn u(z) for z € [a,b], (16)

23(z)
u(a) = 0. (17)
QUESTIONS:

e When u(b) = 07
@ Do there exist one-sided limits

e 2u(z e 2u(z

e ™ lim A, 6% tim V2u=)
z—at  ¢'(z) z—b—  ¢'(z)
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Surface Elevation Eq.

u'(z) = A4 (2) —g(z)+/2|u(z)| sgn u(z) for z € [a,b], (16)

23(z)
u(a) = 0. (17)
QUESTIONS:

e When u(b) = 07
@ Do there exist one-sided limits

e 2u(z e 2u(z

e ™ lim A, 6% tim V2u=)
z—at  ¢'(z) z—b—  ¢'(z)

@ What the values ¢, and ¢ are equal to?

Czech-Georgian Workshop Brno, July 2-4, 2024

R. Hakl Periodic Travelling Waves 9/17



Surface Elevation Eq.

_ A%q(z)

wle) a3(z)

— g(z)1/2|u(z)|sgnu(z) for z € [a, ], (16)

u(a) = 0. (17)
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Surface Elevation Eq.

24/ (z
u'(z) = Aqf(i)) — g(z)1/2|u(z)|sgnu(z) for z € [a, ], (16)

u(a) = 0. (17)

Theorem 2
There exists a threshold Ao > 0 such that
(i) if 0 < |A| < A, the unique solution u of (16), (17) verifies u(b) = 0. Moreover, £, and £

are respectively the unique positive root of

g(a) 22

2
¥+ Yy — =0. 18
7(@" " P e
and the smaller root of ®) )
5 q(db A
_ v+ = 0. 19
@)Y T BEI ) (19)

(ii) if |[A] = Xo, the unique solution u of (16), (17) verifies u(b) = 0. Moreover, £, and ¢, are
respectively the unique positive root of (18) and a root of (19).

(iii) if |[A] > Ao, the unique solution u of (16), (17) verifies u(b) > 0.
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Surface Elevation Eq.

Consider now an interval [4, b] such that g € C2 ([&,5];R) satisfies
g(z) >0 for z€[a,b], ¢'(@8=0, ¢'(6)=0, q'(z)<0 for z€(&b)

and

In this interval, Eq. (12) reads

24 .
u/(z) = 3?((:;) + gq(z)\/2u(z) for z € (&,b). (20)
q3(z
Note that the function §(z) = g(—=) verifies (13) and (14) in the interval [a,b] = [—b, —&].
Moreover, v(z) = u(—z) satisfies the equation

A% (2)
V)= 5w

which is just (15). In conclusion, the case of an interval where g is decreasing can be reduced to
the case studied above.

— §(z)+/2v(z) for z € (a,b), (21)
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Surface Elevation Eq.

(hg') +wig = — (10)

Main Result

Let us assume that g is a T-periodic and positive function of class C2 with a finite number of
critical points in [0,T], all of them non-degenerate, that is, if g’(z) = 0 then ¢”(z) # 0. Then,
there exists a threshold Ap > 0 such that

(i) there exists a positive T-periodic solution i of (10) provided 0 < |%| < Ao,

(ii) no positive T-periodic solution of (10) exists provided |2 | > Ao.

Moreover,
5 5
* 2 o g (b) / "
<22 <mind L0 gy —0,"(5) <0}, (22)
4lgo| ~7° {4I¢J”(b)
where
d, . d; .
¢+ = minfq(e): 2 € [0,T]}, g0 = min{¢"(2): = € [0, TT}. (23)
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Estimation of the Threshold Ag

Theorem 3
Let there exist positive constants A1 and A2 such that A1 < Az, and let v,w € AC’([a,b};R)

satisfy
/ Ad'(z)
v'(z) > ) — g(z)/2|v(z)| sgn v(z) for a. e. z € [a,b],
2,0
w'(z) < >\2q( 2) q(z)/2|w(z)| sgn w(z) for a. e. z € [a,b],
v(a) >0>u(a),  v(8)=0=u(b)
lim inf 2|w(:)(|:)gnw(w) y1(X2),

where y1(A2) is the smaller root of (19) with A = Aa. Then, the threshold Ao admits the estimate

A1 < Ao < Ao (24)
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Estimation of the Threshold Ag

Corollary ‘

Let there exist positive constants A1 and A2 such that A1 < X, let g € C? ([a,b];R), and let
£1,82 € Ct ([a., b};R) satisfy

Li(z) >0 for z € [a,b] (:=1,2), (25)
2
8(=) (e )+ a@E) > g o) frec@l  (9)
2
() (£5(2)q' () + £2(2)q"(2)) < qj(zw) —q(z)l2(z)  for z € [a,b], (27)
£(b) > y1(X2). (28)

where y1(A2) is the smaller root of (19) with A = Aa. Then, the threshold Ao admits the estimate

A1 < Ao < Az (24)
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Example

Consider g(z) = 2 — cosz for z € [0, 27].
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Example

Consider g(z) =2 — cosz for z € [0, 27]. Then local extremes of g divide the interval [0, 27] into
two subintervals, in particular, we set T =27, 1 =0, 2 =7, z1 + T = 27.
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Example

Consider g(z) =2 — cosz for z € [0, 27]. Then local extremes of g divide the interval [0, 27] into
two subintervals, in particular, we set T =27, 1 = 0, 2 = 7, 1 + T = 27. Then we have

¢d'(z) >0 for z €(0,7), g (z) <0 for z € (m2m),
g(0)=d'(m)=g'(2m) =0, J"(0)=4¢"(2m) =1, ¢"(m)=-1.
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Example

Consider g(z) =2 — cosz for z € [0, 27]. Then local extremes of g divide the interval [0, 27] into
two subintervals, in particular, we set T =27, 1 = 0, 2 = 7, 1 + T = 27. Then we have

¢d'(z) >0 for z €(0,7), g (z) <0 for z € (m2m),
g(0)=d'(m)=g'(2m) =0, J"(0)=4¢"(2m) =1, ¢"(m)=-1.

Moreover, since g is symmetric with respect to 7, we can easily conclude that the thresholds
corresponding to each subinterval has the same value, i.e., Ao = Xo1 = Xo2.
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Example

Consider g(z) =2 — cosz for z € [0, 27]. Then local extremes of g divide the interval [0, 27] into
two subintervals, in particular, we set T =27, 1 = 0, 2 = 7, 1 + T = 27. Then we have
q'(z) >0 for z € (0,m), q'(z) <0 for z € (m,2m),
d0)=4g(m)=4g(r)=0, J"(0)=4"2m)=1, ¢"(m)=-1.
Moreover, since g is symmetric with respect to 7, we can easily conclude that the thresholds

corresponding to each subinterval has the same value, i.e., A\g = Ag1 = Xg2. Thus, according to
Main Result, the threshold Ag satisfies the inequalities

1 243
0.25 == < X2 < == = 60.75.
g sy
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Example

Consider g(z) =2 — cosz for z € [0, 27]. Then local extremes of g divide the interval [0, 27] into
two subintervals, in particular, we set T =27, 1 = 0, 2 = 7, 1 + T = 27. Then we have
q'(z) >0 for z € (0,m), q'(z) <0 for z € (m,2m),
d0)=4g(m)=4g(r)=0, J"(0)=4"2m)=1, ¢"(m)=-1.
Moreover, since g is symmetric with respect to 7, we can easily conclude that the thresholds

corresponding to each subinterval has the same value, i.e., A\g = Ag1 = Xg2. Thus, according to
Main Result, the threshold Ag satisfies the inequalities

1 243
0.25 == < X2 < == = 60.75.
g sy

Let us see how to improve the above-mentioned estimate by constructing a specific upper and
lower functions.
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Example

Consider g(z) =2 — cosz for z € [0, 27]. Then local extremes of g divide the interval [0, 27] into
two subintervals, in particular, we set T =27, 1 = 0, 2 = 7, 1 + T = 27. Then we have

¢d'(z) >0 for z €(0,7), g (z) <0 for z € (m2m),
g(0)=d'(m)=g'(2m) =0, J"(0)=4¢"(2m) =1, ¢"(m)=-1.

Moreover, since g is symmetric with respect to 7, we can easily conclude that the thresholds
corresponding to each subinterval has the same value, i.e., A\g = Ag1 = Xg2. Thus, according to
Main Result, the threshold Ag satisfies the inequalities

1 243
0.25 == < X2 < == = 60.75.
g sy

Let us see how to improve the above-mentioned estimate by constructing a specific upper and
lower functions.

According to Corollary it is sufficient to find suitable functions £1(z) and £2(z) that satisfy
(25)—(28). Obviously, we can start with positive constant functions.
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Example

Consider g(z) =2 — cosz for z € [0, 27]. Then local extremes of g divide the interval [0, 27] into
two subintervals, in particular, we set T =27, 1 = 0, 2 = 7, 1 + T = 27. Then we have

¢d'(z) >0 for z €(0,7), g (z) <0 for z € (m2m),
g(0)=d'(m)=g'(2m) =0, J"(0)=4¢"(2m) =1, ¢"(m)=-1.

Moreover, since g is symmetric with respect to 7, we can easily conclude that the thresholds
corresponding to each subinterval has the same value, i.e., A\g = Ag1 = Xg2. Thus, according to
Main Result, the threshold Ag satisfies the inequalities

1 243
0.25 == < X2 < == = 60.75.
g sy

Let us see how to improve the above-mentioned estimate by constructing a specific upper and
lower functions.

According to Corollary it is sufficient to find suitable functions £1(z) and £2(z) that satisfy
(25)—(28). Obviously, we can start with positive constant functions. Then, if we put

def .
32 % min {(8¢" (@) + 14(2))a*(2) : @ € [0, 7]},
def
33 % max { (83"(2) + La9(2))e*(e) s = € 0,7},
we can easily verify that the inequalities (26) and (27) with a = 0, b = 7 are fulfilled.
Consequently, if also (28) is fulfilled, then we can conclude that (24) holds.
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Example

As a first approximation we can put

because 3/2 € (y1(}), y2(})), no matter what A2 < 60.75 is.
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Example

As a first approximation we can put

3
f = = 2,
1=4£ =g
because 3/2 € (y1(}), y2(})), no matter what A2 < 60.75 is.

Then, we get
A2 =3.75, A2 =60.75.

However, in this case £2 = y1(A2) = y2(A2), and so only the lower estimate is improved:

3.75 < A2 < 60.75.
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Example

As a first approximation we can put

3
f = = 2,
1=4£ =g
because 3/2 € (y1(}), y2(})), no matter what A2 < 60.75 is.

Then, we get
A2 =3.75, A2 =60.75.

However, in this case £2 = y1(A2) = y2(A2), and so only the lower estimate is improved:

3.75 < A2 < 60.75.

Analyzing the function z — (£2¢"(z) + £g(z))g3(z) in more details, one can show that the
optimal values for constant functions £; and 42 are

20

5
L=2 =2
T 275
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Example

As a first approximation we can put

because 3/2 € (y1(}), y2(})), no matter what A2 < 60.75 is.
Then, we get
A2 =3.75, A2 =60.75.

However, in this case £2 = y1(A2) = y2(A2), and so only the lower estimate is improved:

3.75 < A2 < 60.75.

Analyzing the function z — (£2¢"(z) + £g(z))g3(z) in more details, one can show that the
optimal values for constant functions £; and 42 are

20 5
= — lo = —.
T 73
Then, we get
540 o 3125

)\% = Ty ~2 11.020408163, A3 o1 = 48.828125, y1(A2) &~ 0.835507015894,

and we have the estimate

540 3125
— <A< .
49 — %~ 64
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Example

Let us pass to nonconstant functions £1(z) and £2(z). Then the choice

£i(z) def a; +b;cosz + ¢;sine + d;sinzcosz for z € [0,7] (:=1,2),
where
a1 =4.265, by =1.639, 3 =—1075, di = —0.778,
— _0.408, do = —0.222,

as = 3.605, bg = 1.025, C2

guarantees that £1(z) and £2(z) satisfy (25)—(28) with a =0, b = 7, A\? = 26.4, and A% = 31.68.
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Example

Let us pass to nonconstant functions £1(z) and £2(z). Then the choice

£i(z) def a; +b;cosz + ¢;sine + d;sinzcosz for z € [0,7] (:=1,2),
where
a1 =4.265, by =1.639, 3 =—1075, di = —0.778,
as = 3.605, by =1.025, 3 = —0.408,  dy = —0.222,
guarantees that £1(z) and £2(z) satisfy (25)—(28) with a =0, b = 7, A\? = 26.4, and A% = 31.68.
Furthermore, note also that
a(m) <y2(A1),  y2(A2) <f2(m) (29)
where y2();) is the greater root of (19) with X = A; (i = 1,2). Indeed,
£Lo(m) = 2.58

£1(m) = 2626, y2(h1) A 2.62792828771, y2(Xa) A 253762540442,

The condition (29) is stronger than (28) and allows strict inequalities in the threshold estimate.

Therefore, according to Corollary we have
26.4 < A% < 31.68.
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