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Introduction

The motion of small amplitude waves of a water layer with variable depth along the x-axis is
described by the equations of the shallow water theory

@�

@t
+

@

@x
[h(x)u] = 0;

@u

@t
+ g

@�

@x
= 0; (1)

where

�(x; t) is the vertical water surface elevation

u(x; t) is the depth-averaged water flow velocity (also called wave velocity)

h(x) is the unperturbed water depth

g is the gravity acceleration (we assume without loss of generality that g = 1)

The shallow water equations conform a system of coupled PDEs of first order that can be easily
decoupled into a single wave equation for the water flow velocity
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[h(x)u] = 0; (2)

or for the surface elevation
@2�

@t2
�

@

@x

h
h(x)

@�

@x

i
= 0: (3)

R. Hakl Periodic Travelling Waves
Czech-Georgian Workshop Brno, July 2-4, 2024

2 / 17



Introduction

The motion of small amplitude waves of a water layer with variable depth along the x-axis is
described by the equations of the shallow water theory

@�

@t
+

@

@x
[h(x)u] = 0;

@u

@t
+ g

@�

@x
= 0; (1)

where

�(x; t) is the vertical water surface elevation

u(x; t) is the depth-averaged water flow velocity (also called wave velocity)

h(x) is the unperturbed water depth

g is the gravity acceleration (we assume without loss of generality that g = 1)

The shallow water equations conform a system of coupled PDEs of first order that can be easily
decoupled into a single wave equation for the water flow velocity

@2u

@t2
�

@2

@x2
[h(x)u] = 0; (2)

or for the surface elevation
@2�

@t2
�

@

@x

h
h(x)

@�

@x

i
= 0: (3)

R. Hakl Periodic Travelling Waves
Czech-Georgian Workshop Brno, July 2-4, 2024

2 / 17



Introduction

The motion of small amplitude waves of a water layer with variable depth along the x-axis is
described by the equations of the shallow water theory

@�

@t
+

@

@x
[h(x)u] = 0;

@u

@t
+ g

@�

@x
= 0; (1)

where

�(x; t) is the vertical water surface elevation

u(x; t) is the depth-averaged water flow velocity (also called wave velocity)

h(x) is the unperturbed water depth

g is the gravity acceleration (we assume without loss of generality that g = 1)

The shallow water equations conform a system of coupled PDEs of first order that can be easily
decoupled into a single wave equation for the water flow velocity

@2u

@t2
�

@2

@x2
[h(x)u] = 0; (2)

or for the surface elevation
@2�

@t2
�

@

@x

h
h(x)

@�

@x

i
= 0: (3)

R. Hakl Periodic Travelling Waves
Czech-Georgian Workshop Brno, July 2-4, 2024

2 / 17



Introduction

The motion of small amplitude waves of a water layer with variable depth along the x-axis is
described by the equations of the shallow water theory

@�

@t
+

@

@x
[h(x)u] = 0;

@u

@t
+ g

@�

@x
= 0; (1)

where

�(x; t) is the vertical water surface elevation

u(x; t) is the depth-averaged water flow velocity (also called wave velocity)

h(x) is the unperturbed water depth

g is the gravity acceleration (we assume without loss of generality that g = 1)

The shallow water equations conform a system of coupled PDEs of first order that can be easily
decoupled into a single wave equation for the water flow velocity

@2u

@t2
�

@2

@x2
[h(x)u] = 0; (2)

or for the surface elevation
@2�

@t2
�

@

@x

h
h(x)

@�

@x

i
= 0: (3)

R. Hakl Periodic Travelling Waves
Czech-Georgian Workshop Brno, July 2-4, 2024

2 / 17



Introduction

The motion of small amplitude waves of a water layer with variable depth along the x-axis is
described by the equations of the shallow water theory

@�

@t
+

@

@x
[h(x)u] = 0;

@u

@t
+ g

@�

@x
= 0; (1)

where

�(x; t) is the vertical water surface elevation

u(x; t) is the depth-averaged water flow velocity (also called wave velocity)

h(x) is the unperturbed water depth

g is the gravity acceleration (we assume without loss of generality that g = 1)

The shallow water equations conform a system of coupled PDEs of first order that can be easily
decoupled into a single wave equation for the water flow velocity

@2u

@t2
�

@2

@x2
[h(x)u] = 0; (2)

or for the surface elevation
@2�

@t2
�

@

@x

h
h(x)

@�

@x

i
= 0: (3)

R. Hakl Periodic Travelling Waves
Czech-Georgian Workshop Brno, July 2-4, 2024

2 / 17



Introduction

The motion of small amplitude waves of a water layer with variable depth along the x-axis is
described by the equations of the shallow water theory

@�

@t
+

@

@x
[h(x)u] = 0;

@u

@t
+ g

@�

@x
= 0; (1)

where

�(x; t) is the vertical water surface elevation

u(x; t) is the depth-averaged water flow velocity (also called wave velocity)

h(x) is the unperturbed water depth

g is the gravity acceleration (we assume without loss of generality that g = 1)

The shallow water equations conform a system of coupled PDEs of first order that can be easily
decoupled into a single wave equation for the water flow velocity

@2u

@t2
�

@2

@x2
[h(x)u] = 0; (2)

or for the surface elevation
@2�

@t2
�

@

@x

h
h(x)

@�

@x

i
= 0: (3)

R. Hakl Periodic Travelling Waves
Czech-Georgian Workshop Brno, July 2-4, 2024

2 / 17



Introduction

The water flow velocity equation:

@2u

@t2
�

@2

@x2
[h(x)u] = 0; (2)

The surface elevation equation:

@2�

@t2
�

@

@x

h
h(x)

@�

@x

i
= 0: (3)

A travelling wave is a special solution of the form

q(x) exp
�
i [!t�	(x)]

�
;

where both q and 	 are scalar real-valued functions. In the related literature,

q(x) is known as the amplitude of the travelling wave

! is the frequency

	(x) is the phase

The inverse problem:

Given a prescribed amplitude q(x), can we determine a suitable bottom profile h(x) allowing the
equation to admit a travelling wave with amplitude q(x)?
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Water Flow Velocity Eq.

C+

T will denote the space of continuous scalar T -periodic functions with positive values.

Given a fixed q 2 C+

T , we wonder if there exists h 2 C+

T such that Eq.

@2u

@t2
�

@2

@x2
[h(x)u] = 0; (2)

has a travelling wave

u(x; t) = q(x) exp
�
i [!t�	(x)]

�
:

(hq)00 + !2q � hq	02 = 0; (4)

2(hq)0	0 + hq	00 = 0: (5)

From (5), we deduce that
�
(hq)2	0

�
0

= 0, and (hq)2	0 is a conserved quantity. This means that

there exists � 2 R such that

[h(x)q(x)]2	0(x) = �; 8x 2 R: (6)

Now, we insert (6) into (4) and arrive to a single second order ODE

(hq)00 + !2q =
�2

(hq)3
: (7)
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Water Flow Velocity Eq.

(hq)00 + !2q =
�2

(hq)3
(7)

Theorem 1

There exists a solution h 2 C+

T of (7) for any � 6= 0, ! 6= 0.

Proof. By introducing the change of variables y = hq into (7), we get the equation

y00 + !2q =
�2

y3
:

Now, the result is a direct consequence of Theorem 3.12 in

[LS] A.C. Lazer, S. Solimini, On periodic solutions of nonlinear differential equations with
singularities, Proc. American Math. Society 99, No. 1, 1987.
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Surface Elevation Eq.

Given a fixed q 2 C+

T , the problem is to find h 2 C+

T such that Eq.

@2�

@t2
�

@

@x

h
h(x)

@�

@x

i
= 0 (3)

has a travelling wave of the form

�(x; t) = q(x) exp
�
i [!t�	(x)]

�
:

(hq0)0 + !2q � hq	02 = 0; (8)

(hq	0)0 + hq0	0 = 0: (9)

Now, the conserved quantity coming from (9) is

h(x)q(x)2	0(x) = �; 8x 2 R:

Using this information in (8), we arrive at the equation

(hq0)0 + !2q =
�2

hq3
: (10)
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Surface Elevation Eq.

We assume that q(x) is a T -periodic and positive function of class C2 with a finite number of
critical points in [0; T ], all of them non-degenerate, that is, if q0(x) = 0 then q00(x) 6= 0. Under
this assumption, we can divide the interval [0; T ] into subintervals [a; b] such that q0(x) is of a
constant sign on (a; b) and q0(a) = q0(b) = 0. Then, the substitution

u(x) =
(h(x)q0(x))2

2!4
for x 2 (a; b) (11)

transforms

(hq0)0 + !2q =
�2

hq3
(10)

into the equation

u0(x) =
�2q0(x)

q3(x)
� q(x) sgn(q0)

p
2u(x) for x 2 (a; b); (12)

where � = �=!2.
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Surface Elevation Eq.

We consider an interval [a; b] such that q 2 C2
�
[a; b];R

�
satisfies

q(x) > 0 for x 2 [a; b]; q0(a) = 0; q0(b) = 0; q0(x) > 0 for x 2 (a; b): (13)

and
q00(a) > 0; q00(b) < 0: (14)

In such an interval, eq. (12) reads as

u0(x) =
�2q0(x)

q3(x)
� q(x)

p
2u(x) for x 2 (a; b): (15)

For technical reasons, we are going to embed this equation into

u0(x) =
�2q0(x)

q3(x)
� q(x)

p
2ju(x)j sgnu(x) for x 2 [a; b]: (16)

Obviously, non-negative solutions of (15) and (16) are the same.

A solution to (16) is understood in the classical sense, that is, a function u 2 C1
�
[a; b];R

�
satisfying (16) for every x 2 [a; b]. We will investigate the properties of a solution to (16) subject
to the initial condition

u(a) = 0: (17)
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For technical reasons, we are going to embed this equation into

u0(x) =
�2q0(x)

q3(x)
� q(x)

p
2ju(x)j sgnu(x) for x 2 [a; b]: (16)

Obviously, non-negative solutions of (15) and (16) are the same.

A solution to (16) is understood in the classical sense, that is, a function u 2 C1
�
[a; b];R

�
satisfying (16) for every x 2 [a; b]. We will investigate the properties of a solution to (16) subject
to the initial condition

u(a) = 0: (17)

R. Hakl Periodic Travelling Waves
Czech-Georgian Workshop Brno, July 2-4, 2024

8 / 17



Surface Elevation Eq.

We consider an interval [a; b] such that q 2 C2
�
[a; b];R

�
satisfies

q(x) > 0 for x 2 [a; b]; q0(a) = 0; q0(b) = 0; q0(x) > 0 for x 2 (a; b): (13)

and
q00(a) > 0; q00(b) < 0: (14)

In such an interval, eq. (12) reads as

u0(x) =
�2q0(x)

q3(x)
� q(x)

p
2u(x) for x 2 (a; b): (15)

For technical reasons, we are going to embed this equation into

u0(x) =
�2q0(x)

q3(x)
� q(x)

p
2ju(x)j sgnu(x) for x 2 [a; b]: (16)

Obviously, non-negative solutions of (15) and (16) are the same.

A solution to (16) is understood in the classical sense, that is, a function u 2 C1
�
[a; b];R

�
satisfying (16) for every x 2 [a; b]. We will investigate the properties of a solution to (16) subject
to the initial condition

u(a) = 0: (17)

R. Hakl Periodic Travelling Waves
Czech-Georgian Workshop Brno, July 2-4, 2024

8 / 17



Surface Elevation Eq.

We consider an interval [a; b] such that q 2 C2
�
[a; b];R

�
satisfies

q(x) > 0 for x 2 [a; b]; q0(a) = 0; q0(b) = 0; q0(x) > 0 for x 2 (a; b): (13)

and
q00(a) > 0; q00(b) < 0: (14)

In such an interval, eq. (12) reads as

u0(x) =
�2q0(x)

q3(x)
� q(x)

p
2u(x) for x 2 (a; b): (15)

For technical reasons, we are going to embed this equation into

u0(x) =
�2q0(x)

q3(x)
� q(x)

p
2ju(x)j sgnu(x) for x 2 [a; b]: (16)

Obviously, non-negative solutions of (15) and (16) are the same.

A solution to (16) is understood in the classical sense, that is, a function u 2 C1
�
[a; b];R

�
satisfying (16) for every x 2 [a; b]. We will investigate the properties of a solution to (16) subject
to the initial condition

u(a) = 0: (17)

R. Hakl Periodic Travelling Waves
Czech-Georgian Workshop Brno, July 2-4, 2024

8 / 17



Surface Elevation Eq.

u0(x) =
�2q0(x)

q3(x)
� q(x)

p
2ju(x)j sgnu(x) for x 2 [a; b]; (16)

u(a) = 0: (17)

QUESTIONS:

When u(b) = 0?

Do there exist one-sided limits

`a
def
= lim

x!a+

p
2u(x)

q0(x)
; `b

def
= lim

x!b�

p
2u(x)

q0(x)
?

What the values `a and `b are equal to?
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Surface Elevation Eq.

u0(x) =
�2q0(x)

q3(x)
� q(x)

p
2ju(x)j sgnu(x) for x 2 [a; b]; (16)

u(a) = 0: (17)

Theorem 2

There exists a threshold �0 > 0 such that

(i) if 0 < j�j < �0, the unique solution u of (16), (17) verifies u(b) = 0. Moreover, `a and `b
are respectively the unique positive root of

y2 +
q(a)

q00(a)
y �

�2

q3(a)q00(a)
= 0: (18)

and the smaller root of

y2 �
q(b)

jq00(b)j
y +

�2

q3(b)jq00(b)j
= 0: (19)

(ii) if j�j = �0, the unique solution u of (16), (17) verifies u(b) = 0. Moreover, `a and `b are
respectively the unique positive root of (18) and a root of (19).

(iii) if j�j > �0, the unique solution u of (16), (17) verifies u(b) > 0.
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Surface Elevation Eq.

Consider now an interval [~a;~b] such that q 2 C2
�
[~a;~b];R

�
satisfies

q(x) > 0 for x 2 [~a;~b]; q0(~a) = 0; q0(~b) = 0; q0(x) < 0 for x 2 (~a;~b):

and
q00(~a) < 0; q00(~b) > 0:

In this interval, Eq. (12) reads

u0(x) =
�2q0(x)

q3(x)
+ q(x)

p
2u(x) for x 2 (~a;~b): (20)

Note that the function ~q(x) = q(�x) verifies (13) and (14) in the interval [a; b] = [�~b;�~a].
Moreover, v(x) = u(�x) satisfies the equation

v0(x) =
�2~q0(x)

~q3(x)
� ~q(x)

p
2v(x) for x 2 (a; b); (21)

which is just (15). In conclusion, the case of an interval where q is decreasing can be reduced to
the case studied above.
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Surface Elevation Eq.

(hq0)0 + !2q =
�2

hq3
(10)

Main Result

Let us assume that q is a T -periodic and positive function of class C2 with a finite number of
critical points in [0; T ], all of them non-degenerate, that is, if q0(x) = 0 then q00(x) 6= 0. Then,
there exists a threshold �0 > 0 such that

(i) there exists a positive T -periodic solution h of (10) provided 0 <
�� �
!2

�� < �0,

(ii) no positive T -periodic solution of (10) exists provided
�� �
!2

�� > �0.

Moreover,

q5
�

4jq0j
< �20 � min

�
q5(b)

4jq00(b)j
: q0(b) = 0; q00(b) < 0

�
; (22)

where

q�
def
= minfq(x) : x 2 [0; T ]g; q0

def
= minfq00(x) : x 2 [0; T ]g: (23)
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Estimation of the Threshold �0

Theorem 3

Let there exist positive constants �1 and �2 such that �1 � �2, and let v;w 2 AC
�
[a; b];R

�
satisfy

v0(x) �
�2
1
q0(x)

q3(x)
� q(x)

p
2jv(x)j sgn v(x) for a. e. x 2 [a; b];

w0(x) �
�2
2
q0(x)

q3(x)
� q(x)

p
2jw(x)j sgnw(x) for a. e. x 2 [a; b];

v(a) � 0 � w(a); v(b) = 0 = w(b)

lim inf
x!b�

p
2jw(x)j sgnw(x)

q0(x)
> y1(�2);

where y1(�2) is the smaller root of (19) with � = �2. Then, the threshold �0 admits the estimate

�1 � �0 � �2: (24)
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Estimation of the Threshold �0

Corollary

Let there exist positive constants �1 and �2 such that �1 � �2, let q 2 C2
�
[a; b];R

�
, and let

`1; `2 2 C1
�
[a; b];R

�
satisfy

`i(x) > 0 for x 2 [a; b] (i = 1; 2); (25)

`1(x)
�
`01(x)q

0(x) + `1(x)q
00(x)

�
�

�2
1

q3(x)
� q(x)`1(x) for x 2 [a; b]; (26)

`2(x)
�
`02(x)q

0(x) + `2(x)q
00(x)

�
�

�2
2

q3(x)
� q(x)`2(x) for x 2 [a; b]; (27)

`2(b) > y1(�2): (28)

where y1(�2) is the smaller root of (19) with � = �2. Then, the threshold �0 admits the estimate

�1 � �0 � �2: (24)
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Example

Consider q(x) = 2� cosx for x 2 [0; 2�].

Then local extremes of q divide the interval [0; 2�] into
two subintervals, in particular, we set T = 2�, x1 = 0, x2 = �, x1 + T = 2�. Then we have

q0(x) > 0 for x 2 (0; �); q0(x) < 0 for x 2 (�; 2�);

q0(0) = q0(�) = q0(2�) = 0; q00(0) = q00(2�) = 1; q00(�) = �1:

Moreover, since q is symmetric with respect to �, we can easily conclude that the thresholds
corresponding to each subinterval has the same value, i.e., �0 = �01 = �02. Thus, according to
Main Result, the threshold �0 satisfies the inequalities

0:25 =
1

4
< �20 �

243

4
= 60:75:

Let us see how to improve the above-mentioned estimate by constructing a specific upper and
lower functions.
According to Corollary it is sufficient to find suitable functions `1(x) and `2(x) that satisfy
(25)–(28). Obviously, we can start with positive constant functions. Then, if we put

�21
def
= min

�
(`21q

00(x) + `1q(x))q
3(x) : x 2 [0; �]

	
;

�22
def
= max

�
(`22q

00(x) + `2q(x))q
3(x) : x 2 [0; �]

	
;

we can easily verify that the inequalities (26) and (27) with a = 0, b = � are fulfilled.
Consequently, if also (28) is fulfilled, then we can conclude that (24) holds.
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Example

As a first approximation we can put

`1 = `2 =
3

2
;

because 3=2 2 (y1(�); y2(�)), no matter what �2 < 60:75 is.

Then, we get
�21 = 3:75; �22 = 60:75:

However, in this case `2 = y1(�2) = y2(�2), and so only the lower estimate is improved:

3:75 � �20 � 60:75:

Analyzing the function x 7! (`2q00(x) + `q(x))q3(x) in more details, one can show that the
optimal values for constant functions `1 and `2 are

`1 =
20

7
; `2 =

5

2
:

Then, we get

�21 =
540

49
� 11:020408163; �22 =

3125

64
= 48:828125; y1(�2) � 0:835507015894;

and we have the estimate
540

49
� �20 �

3125

64
:
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Example

Let us pass to nonconstant functions `1(x) and `2(x). Then the choice

`i(x)
def
= ai + bi cosx+ ci sinx+ di sinx cosx for x 2 [0; �] (i = 1; 2);

where

a1 = 4:265; b1 = 1:639; c1 = �1:075; d1 = �0:778;

a2 = 3:605; b2 = 1:025; c2 = �0:408; d2 = �0:222;

guarantees that `1(x) and `2(x) satisfy (25)–(28) with a = 0, b = �, �2
1
= 26:4, and �2

2
= 31:68.

Furthermore, note also that

`1(�) < y2(�1); y2(�2) < `2(�) (29)

where y2(�i) is the greater root of (19) with � = �i (i = 1; 2). Indeed,

`1(�) = 2:626; y2(�1) � 2:62792828771; y2(�2) � 2:53762549442; `2(�) = 2:58

The condition (29) is stronger than (28) and allows strict inequalities in the threshold estimate.
Therefore, according to Corollary we have

26:4 < �20 < 31:68:
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