Positive solutions to boundary value problems for systems of linear functional differential equations

Robert Hakl ${ }^{1}$
${ }^{1}$ IM CAS, branch in Brno
hakl@ipm.cz

Consider the system of functional differential inequalities

$$
\mathcal{D}(\sigma(t))\left[u^{\prime}(t)-\ell(u)(t)\right] \geq 0 \quad \text { for a. e. } t \in[a, b], \quad \varphi(u) \geq 0,
$$

where $\ell: C\left([a, b] ; \mathbb{R}^{n}\right) \rightarrow L\left([a, b] ; \mathbb{R}^{n}\right)$ is a linear bounded operator, $\varphi: C\left([a, b] ; \mathbb{R}^{n}\right) \rightarrow \mathbb{R}^{n}$ is a linear bounded functional, $\sigma(t)=\left(\sigma_{i}(t)\right)_{i=1}^{n}$ where $\sigma_{i}:[a, b] \rightarrow\{-1,1\}$ are measurable functions, and $\mathcal{D}(\sigma(t))=\operatorname{diag}\left(\sigma_{1}(t), \ldots, \sigma_{n}(t)\right)$. We establish effective conditions guaranteeing that every absloutely continuous vector-valued function u satisfying the above-mentioned inequalities admits also the inequality $u(t) \geq 0$ for $t \in[a, b]$; in particular cases also the inequality $\mathcal{D}(\sigma(t)) u^{\prime}(t) \geq 0$ for a. e. $t \in[a, b]$ is guaranteed.

