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(W =pOu+atw;w0) = u(w), ¥(0) = v () Q

@ p: [0,w] = R ... Lebesgue integrable
@ gq: [0,w] x R— R ... Carathéodory + sublinear

> solution = AC function
> we are interested in the existence and uniqueness of non-trivial non-negative as well
as positive solutions of (x)

lg(t, z)| < go(t,z) fora.e.t€[0,w]andall z> zo,
zo >0, go:[0,w] X [zg,+00[— [0,+00[ is a Carathéodory function,
qo(t,-): [zo, +oo[ — [0, +00[ is non-decreasing for a.e. t € [0, w], (H1)
lim l/ go(s,z)ds = 0.
0
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v’ =p(t)u+q(t,u);  u(0) =uw), w(0)=u'(w) (%)

o p: [0,w] = R ... Lebesgue integrable
@ ¢: [0,w] x R — R ... Carathéodory + sublinear

> solution = AC? function
> we are interested in the existence and uniqueness of non-trivial non-negative as well

as positive solutions of (%)

q(t,z) > zg(t,z) fora.e. t € [0,w] and all z €]0, 4],
6§ >0, g:[0,w]x]0,8] = R is a locally Carathéodory function, (H2)
g(t,-): ]0,6] — R is non-increasing for a.e. t € [0, w],



v’ =p(t)u+q(t,u);  u(0) =uw), w(0)=u'(w) (%)

o p: [0,w] = R ... Lebesgue integrable
@ ¢: [0,w] x R — R ... Carathéodory + sublinear

> solution = AC? function
> we are interested in the existence and uniqueness of non-trivial non-negative as well

as positive solutions of (%)

for every b > a > 0, there exists hqp € L([0,w]) such that
hap(t) >0 fora.e.t €[0,w], ha Z0, (Hs)
q(t,z) > hap(t) fora.e. t € [0,w] and all z € [a, ],
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v’ =p(t)u+q(tu);  u(0) = u(w), u'(0) =v'(w) (%)

@ p: [0,w] = R ... Lebesgue integrable
@ g: [0,w] x R — R ... Carathéodory + sublinear

> solution = AC? function

>> we are interested in the existence and uniqueness of non-trivial non-negative as well
as positive solutions of (%)

For every b > a > 0 and ¢ > 0, there exists hape € L([0, w]) such that

hape(t) >0 for a.e. t € [0,w], hase Z 0,

alt,e)  altz+c)
T T +c

> hape(t) fora.e.t€[0,w]andall z € [a,b].
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@ p: [0,w] = R ... Lebesgue integrable
@ ¢: [0,w] x R —» R ... Carathéodory + sublinear

> solution = AC? function

> we are interested in the existence and uniqueness of non-trivial non-negative as well
as positive solutions of (%)

> particular case:
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v’ =p(t)u+q(t,u); u(0) =uw), w(0)=u'(w) (%)

@ p: [0,w] = R ... Lebesgue integrable
@ ¢: [0,w] x R —» R ... Carathéodory + sublinear

> solution = AC? function

> we are interested in the existence and uniqueness of non-trivial non-negative as well
as positive solutions of (%)

> particular case:

"

W' = p(t)u+ Al sgnu;  u(0) = u(w), w'(0) = u'(w) (1)

e p,h € L([0,w])
e Aglo,1]

either h >0 a.e. on [O,w], orh <0 a.e. on]0,w],

the coefficient p is not constant and can change its sign!!!



| w = p)u+ () w(0) = u(w), ¥/(0) = u/(w)

o We say that m if

u € ACT([0,w)),
u”’(t) > p(t)u(t) fora.e. t € [0,w], = u(t) >0 forte|0,w]
u(0) = u(w), ¥/(0) = v'(w)

Alternatively — Green's function is positive, or antimaximum principle holds

o We say that if

u € ACT([0,w)),
u”(t) > p(t)u(t) fora.e. t € [0,w], = u(t) <0 forte[0,w]
u(0) = u(w), u'(0) = v'(w)

Alternatively — Green's function is negative, or maximum principle holds



| w = p)u+ () w(0) = u(w), ¥(0) = u/(w)

o We say that | p € Vo(w) | if the problem

W' = p(t)u; u(0) = u(w), ¥(0) = u'(w)

has a positive solution.

o We say that | p € Di(w) | if for any a € [0,w], the solution u of the problem the
problem

v =pt)u; u(a)=0, u'(a)=1

has at most one zero on the interval Ja, & + w[, where P is the w-periodic extension
of p to the whole real axis.
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W' = pltyu+ h(t)|u sgnu;
@ h(t) >0 fora.e. t€0,w], hZO0

u(0) = u(w), u'(0) = u'(w)
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W' = p(t)u+ h(t)[u] sgnu;  u(0) = u(w), u'(0) = u'(w) (1)

@ h(t) >0 fora.e te[0,w], hZO

|y/l:ay+b\3/§|
eb>0,a<0
/
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W' = p(t)u+ h(t)[u] sgnu;  u(0) = u(w), u'(0) = u'(w) (1)

Theorem. Let A €]0,1] and

h(t) >0 fora.e. t €[0,w] (A1)
Then:
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Theorem. Let A €]0,1] and

h(t) >0 fora.e. t €[0,w] (A1)
Then:

(1) p€EV (w)UWo(w) = (1) has only the trivial solution
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Theorem. Let A €]0,1] and

h(t) >0 fora.e. t €[0,w] (A1)
Then:
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= (1) has only the trivial solution
= (1) has at least 3 sign-constant solutions (;_0 ;_o, =0)



W' = p(t)u+ h(t)[u] sgnu;  u(0) = u(w), u'(0) = u'(w) (1)

Theorem. Let A €]0,1] and

h(t) >0 fora.e. t € [0,w]. (A1)
Then:
(1) pe V™ (w) UVo(w)
(2) pg V™ (w) UVo(w)

(1) has only the trivial solution

=
= (1) has at least 3 sign-constant solutions (;_0 ;_o, =0)

Example. Consider a particular case of (1) with
1
p(t) :== =1, h(t) :=3(1—sint) fort € [0,2n], A= 3

namely, the problem

u' = —u+3(1—sint)\/|ulsgnu; u(0) = u(27), u'(0) = u'(27). 2)

Then p € D1(w), p € V™ (w) U Vo(w) U VT (w), (A1) holds, and problem (2) has
a solution
u(t) := (1 +sint)®> for t € [0, 27].
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Theorem. Let A €]0,1] and
h(t) >0 fora.e. t € [0,w]. (A1)
Then:
(1) p€V (w) UVp(w)
(2) p¢V (w) UVo(w)
(2a) pe VT (w) = (1) has exactly 3 solutions (> 0, < 0, = 0)

= (1) has only the trivial solution
= (1) has at least 3 sign-constant solutions (%O ;0, =0)
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Theorem. Let A €]0,1] and
h(t) >0 fora.e.t € [0,w]. (A1)
Then:
(1) pEV (w)UVo(w) = (1) has only the trivial solution
(2) pE€V (w)UWo(w) = (1) has at least 3 sign-constant solutions (%O ;0, =0)
(2a) pe VT(w) = (1) has exactly 3 solutions (> 0, < 0, = 0)

(2b) p € D1(w) \ [V_(w) UVo(w)U V+(w)] = (1) has at least 3 sign-constant
solutions and no sign-changing solutions



W' = p(t)u+ Al sgnu;  u(0) = u(w), w'(0) = u'(w) (1)

Theorem. Let A €]0,1] and

h(t) >0 fora.e.t € [0,w]. (A1)
Then:
(1) pEV (w)UVo(w) = (1) has only the trivial solution
(2) pE€V (w)UWo(w) = (1) has at least 3 sign-constant solutions (%O ;0, =0)
(2a) pe VT(w) = (1) has exactly 3 solutions (> 0, < 0, = 0)

(2b) p € D1(w) \ [V_(w) UVo(w)U V+(w)] = (1) has at least 3 sign-constant
solutions and no sign-changing solutions

(2c) p € Di(w) = (1) has at least 3 sign-constant solutions



u"’ = p(t)u + h(t)|ul sgnu;  u(0) = u(w), w'(0) = '(w) (1)

Theorem. Let A €]0,1] and
h(t) >0 fora.e.t € [0,w]. (A1)
Then:
(1) pEV (w)UWo(w) = (1) has only the trivial solution
(2) pE€V (w)UWo(w) = (1) has at least 3 sign-constant solutions (%O ;0, =0)

(2a) pe VT(w) = (1) has exactly 3 solutions (> 0, < 0, = 0)

(2b) p € D1(w) \ [V_(w) UVo(w)U V+(w)] = (1) has at least 3 sign-constant
solutions and no sign-changing solutions

(2¢) p € Di(w) = (1) has at least 3 sign-constant solutions

Remark: Assertions (1) and (2a) remain true even if (A1) is relaxed to

h(t) >0 fora.e. t€[0,w], h #0. (A2)



W' = p(t)u+ Al sgnu;  u(0) = u(w), w'(0) = u'(w) (1)

Theorem. Let A €]0,1] and
h(t) >0 fora.e. t € [0,w]. (A1)
Then:
(1) pEV (w)UVo(w) = (1) has only the trivial solution
(2) pE€V (w)UWo(w) = (1) has at least 3 sign-constant solutions (%O 0, =0)
(2a) pe VT(w) = (1) has exactly 3 solutions (> 0, < 0, = 0)

(2b) p € D1(w) \ [V_(w) UVo(w)U V+(w)] = (1) has at least 3 sign-constant
solutions and no sign-changing solutions

(2¢) p € Di(w) = (1) has at least 3 sign-constant solutions
Remark: Assertions (1) and (2a) remain true even if (A1) is relaxed to
h(t) >0 fora.e. t€[0,w], h #0. (A2)

Open questions:
0o p@V (Ww)UWo(w)UVHT(w) = (1) has a positive solution?
e pZDi(w) = (1) has a sign-changing solution?
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>p&V (w)UWo(w) = (1) has at least one non-trivial non-negative solution
e pZV (w)UWo(w) = 3¢ L([0,w]), such that £>0 and p+ £ € Int V' (w)
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= 3 an arbitrarily large positive lower function o of problem (1)
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e Jr > 0 such that p + Tl% €V (w) = 3 an arbitrarily small positive upper
function B of problem (1)
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e Jr > 0 such that p + rl% €V (w) = 3 an arbitrarily small positive upper
function B of problem (1)

@ § > 0 large enough, cutting function x(z) := [z]+ — [t — 6]+ forz € R
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= 3 an arbitrarily large positive lower function o of problem (1)

e Jr > 0 such that p + rl% €V (w) = 3 an arbitrarily small positive upper
function B of problem (1)

@ § > 0 large enough, cutting function x(z) := [z]+ — [t — 6]+ forz € R

@ auxiliary problem

W = (p(t) + £(t))u + h()x(w)] sgnx(u) — L()x(w); PBC (3
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>p&V (w)UWo(w) = (1) has at least one non-trivial non-negative solution
e pZV (w)UWo(w) = 3¢ L([0,w]), such that £>0 and p+ £ € Int V' (w)
= 3 an arbitrarily large positive lower function o of problem (1)

e Jr > 0 such that p + rl% €V (w) = 3 an arbitrarily small positive upper
function B of problem (1)

@ § > 0 large enough, cutting function x(z) := [z]+ — [t — 6]+ forz € R
@ auxiliary problem

W = (p(t) + £(t))u + h()x(w)] sgnx(u) — L()x(w); PBC (3

o (o, B) is a couple of reverse-ordered lower and upper functions of (3)
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>p&V (w)UWo(w) = (1) has at least one non-trivial non-negative solution
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= 3 an arbitrarily large positive lower function o of problem (1)

e Jr > 0 such that p + rl% €V (w) = 3 an arbitrarily small positive upper
function B of problem (1)

@ § > 0 large enough, cutting function x(z) := [z]+ — [t — 6]+ forz € R
@ auxiliary problem

W = (p(t) + £(t))u + h()x(w)] sgnx(u) — L()x(w); PBC (3

o (o, B) is a couple of reverse-ordered lower and upper functions of (3)

@ (3) has a solution u such that

0 < B(tu) < u(ty) < a(ty) for some ty € [0,w] (4)
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>p&V (w)UWo(w) = (1) has at least one non-trivial non-negative solution

e pZV (w)UWo(w) = 3¢ L([0,w]), such that £>0 and p+ £ € Int V' (w)
= 3 an arbitrarily large positive lower function o of problem (1)

e Jr > 0 such that p + rl% €V (w) = 3 an arbitrarily small positive upper
function B of problem (1)

@ § > 0 large enough, cutting function x(z) := [z]+ — [t — 6]+ forz € R

@ auxiliary problem
W = (p(t) + £(t))u + h()x(w)] sgnx(u) — L()x(w); PBC (3

o (o, B) is a couple of reverse-ordered lower and upper functions of (3)

@ (3) has a solution u such that
0 < B(tu) < u(ty) < a(ty) for some ty € [0,w] (4)

ep+LentVT(w) = wu(t)>0forte0,uw]
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>p&V (w)UWo(w) = (1) has at least one non-trivial non-negative solution
e pZV (w)UWo(w) = 3¢ L([0,w]), such that £>0 and p+ £ € Int V' (w)
= 3 an arbitrarily large positive lower function o of problem (1)

e Jr > 0 such that p + rl% €V (w) = 3 an arbitrarily small positive upper
function B of problem (1)

@ § > 0 large enough, cutting function x(z) := [z]+ — [t — 6]+ forz € R
@ auxiliary problem

W = (p(t) + £(t))u + h()x(w)] sgnx(u) — L()x(w); PBC (3

o (o, B) is a couple of reverse-ordered lower and upper functions of (3)

@ (3) has a solution u such that
0 < B(tu) < u(ty) < a(ty) for some ty € [0,w] (4)

ep+LentVT(w) = wu(t)>0forte0,uw]
e (5) = wu#o0



W' = p(t)u+ Al sgnu;  u(0) = u(w), w'(0) = u'(w) (1)

>p&V (w)UWo(w) = (1) has at least one non-trivial non-negative solution
e pZV (w)UWo(w) = 3¢ L([0,w]), such that £>0 and p+ £ € Int V' (w)
= 3 an arbitrarily large positive lower function o of problem (1)

e Jr > 0 such that p + rl% €V (w) = 3 an arbitrarily small positive upper
function B of problem (1)

@ § > 0 large enough, cutting function x(z) := [z]+ — [t — 6]+ forz € R

@ auxiliary problem
W = (p(t) + £(t))u + h()x(w)] sgnx(u) — L()x(w); PBC (3

o (o, B) is a couple of reverse-ordered lower and upper functions of (3)

@ (3) has a solution u such that

0 < B(tu) < u(ty) < a(ty) for some ty € [0,w] (4)
ep+LentVT(w) = wu(t)>0forte0,uw]
e (5) = wu#o0

o u(t)<édfort€0,w] = x(u)=wu = wuisa non-trivial non-negative solution
of (1)



W' = p(t)u+ Al sgnu;  u(0) = u(w), w'(0) = v'(w) (1)

>p &V (w)UVo(w) = (1) has at least one non-trivial non-negative solution

> p € Di(w) and u is a solution of (1) =

either u(t) >0 fort € [0,w], or wu(t)<0 forté€[0,w]



"

W' = p(t)u+ h(t)[u] sgnu;  u(0) = u(w), u'(0) = u'(w)

>p &V (w)UVo(w) = (1) has at least one non-trivial non-negative solution

> p € Di(w) and u is a solution of (1) =

either u(t) >0 forte€ [O,w], or wu(t) <0 forté€[0,w]

> p € VT (w) and u is a solution of (1) =

either u(t) >0 forte€ [0,w], or wu(t) <0 fortée[0,w]

1)



"

u" = p(t)u+ h(t)|ul” sgnu;

u(0) = u(w), u'(0) = u'(w)

@ h(t)<O0fora.e te[0,w], hZD0

(1)



"

u' = p(t)u + h(

t)lul sgnu;  w(0) = u(w), uw'(0) = u'(w)

@ h(t)<O0fora.e te[0,w], hZD0

e b<O

Yy =ay+byy

(1)



"

u' = p(t)u + h(

t)lul sgnu;  w(0) = u(w), uw'(0) = u'(w)

@ h(t)<O0fora.e te[0,w], hZD0

eb<0,a>0

y' =ay+byy

(1)



"

v’ = p(t)u+ Al sgnu;  u(0) = u(w), w'(0) = '(w) (1)

@ h(t)<O0fora.e te[0,w], hZ0

y' = ay+byy

0b<0,a<0



W' = p(t)u+ Al sgnu;  u(0) = u(w), w'(0) = u'(w) (1)

Theorem. Let X €]0,1[ and

h(t) <0 fora.e. t€[0,w], h £ 0. (As)
Then:



"

W' = p(t)u+ Al sgnu;  u(0) = u(w), w'(0) = u'(w) (1)

Theorem. Let X €]0,1[ and

h(t) <0 fora.e. t€[0,w], h £ 0. (As)
Then:

(1) peV=(w) = (1) has exactly 3 solutions (> 0, < 0, =0)



v =p(t)u+ h(t)|u sgnw; u(0) = u(w), v (0) = u'(w)

Theorem. Let X €]0,1[ and
h(t) <0 fora.e. t€[0,w], h £ 0.
Then:

(1) peV=(w) = (1) has exactly 3 solutions (> 0, < 0, =0)
(2) p€V~(w) = (1) has no positive solutions

(1)
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W' = p(t)u+ Al sgnu;  u(0) = u(w), w'(0) = u'(w)

Theorem. Let X €]0,1[ and
h(t) <0 fora.e. t€[0,w], h £ 0.
Then:

(1) peV=(w) = (1) has exactly 3 solutions (> 0, < 0, =0)
(2) p€V~(w) = (1) has no positive solutions

Open questions:
e pZV (w) = (1) has a non-trivial non-negative solution?

e pZV (w) = (1) has a sign-changing solution?

(1)
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W' = p(t)u+ h(t)ul sgnu;  u(0) = u(w), u'(0) = u'(w)

>p€V (w) = (1) has at least one positive solution

(1)
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W' = p(t)u+ h(t)ul sgnu;  u(0) = u(w), u'(0) = u'(w)

>p€V (w) = (1) has at least one positive solution

e peEV (w) = Ir>0suchthatp— 71’1* € Int V1 (w)

(1)
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W' = p(t)u+ h(t)ul sgnu;  u(0) = u(w), u'(0) = u'(w)

>p€V (w) = (1) has at least one positive solution

e peEV (w) = Ir>0suchthatp— Tl’g €IntVt(w) = 3 an arbitrarily

small positive lower function o of problem (1)

(1)
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W' = p(t)u+ h(t)ul sgnu;  u(0) = u(w), u'(0) = u'(w)
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W' = p(t)u+ h(t)ul sgnu;  u(0) = u(w), u'(0) = u'(w) (1)

>p€V (w) = (1) has at least one positive solution

e peEV (w) = Ir>0suchthatp— Tl’g €IntVt(w) = 3 an arbitrarily

small positive lower function o of problem (1)

@ peV (w) = I an arbitrarily large positive upper function S of problem (1)
o (a,B) is a couple of well-ordered lower and upper functions of (1)

@ (1) has a solution u such that

0 < a(t) < u(t) < B(¢) for t € [0, w] (5)
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(1) Assume that
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2" = (p(t) + h($)v 7' (1)) 2 + h(2) [ TH(2) — T ()] u(t)
z" = (p(t) + h(t)w* ()2
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>p€V (w) = (1) has at least one positive solution

>p €V (w) = (1) has at most one positive solution

@ assume the contrary: (1) has two distinct positive solutions
@ peV (w) = (1) has solutions u, v such that

0 <u(t) <wu(t) fortée0,w], uZv

(1) Assume that
u(t) < v(t) fort € [0,w].

@ u, v are positive periodic solutions, respectively, to equations
2" = (p(t) + h(t)vx_l(t))z + h(t) [ux_l(t) — vx_l(t)] u(t)
z" = (p(t) + h(t)w* ()2

o the third Fredholm's theorem =

0= / h(s) [uxfl(s) — vxfl(s)] u(s)v(s)ds < C’onst./ h(s)ds <0
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>p€V (w) = (1) has at least one positive solution

>p €V (w) = (1) has at most one positive solution

@ assume the contrary: (1) has two distinct positive solutions
@ pEV (w) = (1) has solutions u, v such that

0<u(t) <wu(t) forte0,w], uZv

(2) Assume that
u(ts) = v(ts) for some t. € [0, w].

o w(t) := u(t) — v(t) is a solution of the problem

w = p(t)w + () [W(2) — ()]



W' = p(t)u+ Al sgnu;  u(0) = u(w), w'(0) = u'(w) (1)

>p€V (w) = (1) has at least one positive solution

>p €V (w) = (1) has at most one positive solution

@ assume the contrary: (1) has two distinct positive solutions
@ pEV (w) = (1) has solutions u, v such that

0<u(t) <wu(t) forte0,w], uZv

(2) Assume that
u(ts) = v(ts) for some t. € [0, w].

o w(t) := u(t) — v(t) is a solution of the problem
w” = p(t)w + h(t) [u”(t) — v*(t)]

o if h(") [u"(-) - vx(-)] =0, thenp € V' (w) = w =0 - contradiction
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>p€V (w) = (1) has at least one positive solution

>p €V (w) = (1) has at most one positive solution

@ assume the contrary: (1) has two distinct positive solutions
@ pEV (w) = (1) has solutions u, v such that

0<u(t) <wu(t) forte0,w], uZv

(2) Assume that
u(ts) = v(ts) for some t. € [0, w].

o w(t) := u(t) — v(t) is a solution of the problem
w” = p(t)w + h(t) [u”(t) — v*(t)]

o if h(") [u"(-) - vx(-)] =0, thenp € V' (w) = w =0 - contradiction
o if A(+) [ux(-) — vx(-)] Z£0,thenp €V (w) = w(t) <0 on t[0,w]— contradiction



W' = p(t)u+ Al sgnu;  u(0) = u(w), w'(0) = u'(w) (1)

>p€V (w) = (1) has at least one positive solution
>p€V (w) = (1) has at most one positive solution

> (1) has a positive solution = p € V™ (w)



