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General state-dependent impulsive BVP

Vector case with p barriers given explicitely t = γi(x)

a < γ1(x) < γ2(x) < · · · < γp(x) < b,

x ∈ D ⊂ Rn, n, p ∈ N, γi ∈ C(D;R), i = 1, . . . , p.

z′(t) = f(t, z(t)) for a.e. t ∈ [a, b], (1)

z(t+)− z(t) = Ji (t, z(t)) for t such that t = γi (z(t)), (2)

`(z) = c0, c0 ∈ Rn. (3)

We assume that

f ∈ Car([a, b]× Rn;Rn), Ji ∈ C([a, b]× Rn;Rn),

` : GL([a, b];Rn)→ Rn is linear bounded.
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State-dependent impulses

Definition

z ∈ GL([a, b];Rn) is a solution of problem (1)–(3), if

z satisfies equation (1) for a.e. t ∈ [a, b],

z fulfils conditions (2) and (3).

We prove the existence of a solution z of problem (1)–(3) having
the following properties:

for each i ∈ {1, . . . , p} there exists a unique τi ∈ (a, b) such
that γi (z(τi )) = τi ,

a = τ0 < τ1 < · · · < τp < τp+1 = b,

the restrictions z|[τ0,τ1] and z|(τi ,τi+1], i = 1, . . . , p, are
absolutely continuous.
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Impulsive differential equation u′(t) = f (t, u(t))
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Barrier t = γ(x)
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Main differences between FIX and S–D impulses

1. The space where we search solutions

` : GL([a, b];Rn)→ Rn is linear bounded.

GL([a, b];Rn) is a Banach space of left-continuous regulated
mappings.

A mapping z : [a, b]→ Rn is left-continuous regulated on
[a, b] if for each t ∈ (a, b] and each s ∈ [a, b)

lim
ξ→t−

z(ξ) = z(t) = z(t−) ∈ Rn, lim
ξ→s+

z(ξ) = z(s+) ∈ Rn.
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u′′(t) = f (t, u(t), u′(t)) with three barriers (p = 3)

Two solutions of impulsive BVP have jumps at different points
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Main differences between FIX and S–D impulses

2. Number of intersection points

There are barriers γ and solutions u of differential equations such
that the equation

τ = γ(u(τ))

has more than one solution τu. In this case the solution u has more
intersection points with the barrier γ. Then the mapping

P : u 7→ τu

is a multivalued mapping. This makes a transformation of problem
(1)–(3) to an operator equation difficult.
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Solution z of the impulsive Dirichlet problem has three
intersection points with the barrier γ
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Solution z of an impulsive differential equation has
infinitely many intersection points with the barrier γ

Impulsive BVP cannot be solved
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Solution z of an impulsive differential equation has
infinitely many intersection points with the barrier γ

Impulsive BVP cannot be solved
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Beating of solutions

Consider a solution u of the initial problem

u′′(t) = 0, u(0) = −0.9, u′(0) = 0,

with the imupulse condition

u(τ+)− u(τ) = J(u(τ)), τ = γ(u(τ)).

Here

J(x) = −x2 − x , γ(x) = x + 4, for x ∈ [−3, 3].

The solution u is subject to an impulse effect at infinitely many
moments τn, and limn→∞ τn = τ∗ = 4, limn→∞ u(τn) = 0.
Such solution cannot be extended to T > 4.
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Beating of solution u
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Solution u of a differential equation is pasted together with
the barrier γ

Impulsive equation (and impulsive BVP) cannot be solved

γ(x)

u

τ1 τ2 t
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Main differences between FIX and S–D impulses

3. Intersection point τu need not depend on u continuously

Consider functions in C[0,T ] having just one intersection point
with γ. The next figure shows functions u and v which are close to
each other while their intersection points τu and τv are not. In this
case the functional

P : u 7→ τu

can be defined on the set of such functions, but P is not
continuous. This makes a transformation of problem (1)–(3) to an
operator equation difficult.
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Point τu does not depend on u continuously
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Main differences between FIX and S–D impulses

4. Resonance

z′(t) = f(t, z(t)) for a.e. t ∈ [a, b], (4)

z(t+)− z(t) = Ji (t, z(t)) for t such that t = γi (z(t)), (5)

`(z) = c0, c0 ∈ Rn, (6)

where
f(t, z(t)) = A(t)z(t) + h(t, z(t)),

Ji (t, z(t)) = Biz(t) + mi (t, z(t)), i = 1, . . . , p.

The linear homogeneous problem corresponding to problem (4)-(6)

z′(t) = A(t)z(t), `(z) = 0. (7)
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Main differences between FIX and S–D impulses

5. Fredholm property
We have the Dirichlet BVP with one state–dependent impulse

(7)


u′′(t) = 0, u(0) = −1, u(10) = 0,
u(τ+)− u(τ) = 1, u′(τ+)− u′(τ−) = 1,
τ = 5 + u(τ) for τ ∈ [1, 9].

and the same BVP with one impulse at fixed point

(8)


u′′(t) = 0, u(0) = −1, u(10) = 0,
u(t0+)− u(t0) = 1, u′(t0+)− u′(t0−) = 1,
t0 ∈ [1, 9] is fixed.

Since the problem u′′(t) = 0, u(0) = u(10) = 0 has only the trivial
solution and so the Green function exists, problem (8) is solvable.
But problem (7) is not solvable!
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Solution u of u′′ = 0, u(0) = −1, u′(0) = −3

t

x
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General state-dependent impulsive BVP

Vector case with p barriers given explicitely t = γi(x)
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State-dependent impulses

Definition

z ∈ GL([a, b];Rn) is a solution of problem (1)–(3), if

z satisfies equation (1) for a.e. t ∈ [a, b],

z fulfils conditions (2) and (3).

We prove the existence of a solution z of problem (1)–(3) having
the following properties:

for each i ∈ {1, . . . , p} there exists a unique τi ∈ (a, b) such
that γi (z(τi )) = τi ,

a = τ0 < τ1 < · · · < τp < τp+1 = b,

the restrictions z|[τ0,τ1] and z|(τi ,τi+1], i = 1, . . . , p, are
absolutely continuous.
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Representation of a linear bounded operator

M.Tvrdý: Linear integral equations in the space of regulated
functions, Mathematica Bohemica 123 (1998), 177–212.

` : GL([a, b];Rn)→ Rn is a linear bounded operator if and only if
there exist K ∈ Rn×n and V ∈ BV([a, b];Rn×n) such that

`(z) = Kz(a) +

∫ b

a
V (t) d[z(t)], z ∈ GL([a, b];Rn), (8)

where the integral in (8) is the Kurzweil-Stieltjes integral.
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Green’s matrix

If det K 6= 0, then there exists the Green’s matrix G of the
corresponding linear homogeneous problem

(5) z′(t) = 0, `(z) = 0.

The matrix G takes the form

G (t, τ) =

{
G1(t, τ), a ≤ t ≤ τ ≤ b,

G2(t, τ), a ≤ τ < t ≤ b,

where

G1(t, τ) = −K−1V (τ), G2(t, τ) = −K−1V (τ)+I , t, τ ∈ [a, b].
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First operator representation of problem (1)-(3)

F : GL([a, b];Rn)→ GL([a, b];Rn)

(Fz)(t) =

∫ b

a
G (t, s)f(s, z(s))ds +

p∑
i=1

G (t, τi )Ji (τi , z(τi ))

+Y (t) [`(Y )]−1 c,

τi depends on z through τi = γi (z(τi )), i = 1, . . . , p.

Pi : z→ τi , i = 1, . . . , p.

z is a fixed point of operator F iff z is a solution of problem
(1)-(3). Pi can be multivalued mapping and need not be
continuous.
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F is not continuous

Even if all mappings Pi are absolutely continuous functionals, the
operator

F : GL([a, b];Rn)→ GL([a, b];Rn)

(Fz)(t) =

∫ b

a
G (t, s)f(s, z(s))ds+

p∑
i=1

G (t,Pi (z))Ji (Pi (z), z(Pi (z)))

+Y (t) [`(Y )]−1 c,

is not continuous.
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F is not continuous

u(t) = 1, um(t) = 1− 1/m, t ∈ [a, b], m ∈ N,
v = Fu, vm = Fum, m ∈ N,

lim
m→∞

um(t) = u(t) uniformly on [a, b],

lim
m→∞

vm(τ) = v(τ+) 6= v(τ).
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Transversality conditions

Consider µj ∈ (0,∞), j = 1, . . . , n, and denote x = (x1, . . . , xn)T ,
y = (y1, . . . , yn)T , u = (u1, . . . , un)T ,
A = {x ∈ Rn : |xj | ≤ µj , j = 1, . . . , n}.
Assume:

∃ disjoint subintervals [ai , bi ] of (a, b) : a1 < · · · < ap,
ai ≤ γi (x) ≤ bi , i = 1, . . . , p, x ∈ A,

∀i = 1, . . . , p, j = 1, . . . , n, ∃λij ∈ [0,∞) :
|γi (x)− γi (y)| ≤

∑n
j=1 λij |xj − yj |, x, y ∈ A.

ρj ∈ (0,∞), j = 1, . . . , n, satisfy

n∑
j=1

λijρj < 1 for i = 1, . . . , p.

B = {u ∈W1,∞([a, b];Rn) : ‖uj‖∞ < µj , ‖u′j‖∞ < ρj , j = 1, . . . , n}.
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Lemma

For each u ∈ B and i ∈ {1, . . . , p} there exists a unique root
t = τi ∈ (a, b) of the function

σ(t) = γi (u(t))− t.

We define a continuous functional Pi : B → (a, b) by

Piu = τi , u ∈ B, i = 1, . . . , p,

and the set Ω = Bp+1 ⊂ X, where

X =
(
W1,∞([a, b];Rn)

)p+1
,

is the Sobolev space equipped with the norm

‖U‖X =

p+1∑
k=1

‖uk‖1,∞ for U = (u1, . . . ,up+1) ∈ X.
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Second operator representation of problem (1)-(3)

Now, assume:

det K 6= 0, ∃f̃ ∈ R : |f(t, x)| ≤ f̃ , a.e. t ∈ [a, b], all x ∈ Rn,

and consider the operator F : Ω→ X,

(FU)k(t) =

∫ b

a
G (t, s)

p+1∑
i=1

χ(τi−1,τi )(s)f(s,ui (s))ds

+

p∑
i=k

G1(t, τi )Ji (τi ,ui (τi ))

+
k−1∑
i=1

G2(t, τi )Ji (τi ,ui (τi )) + Y (t) [`(Y )]−1 c,

where U = (u1, . . . ,up+1), k = 1, . . . , p + 1, τ0 = a, τp+1 = b,
and τi depends on ui through τi = γi (ui (τi )), i = 1, . . . , p.
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The operator F is not compact on Ω ⊂ X. The problem lies with
the chosen Banach space X =

(
W1,∞([a, b];Rn)

)p+1
. Therefore

we define the operator G : Ω→ X,

(GU)k(t) =


(FU)k(τk−1) +

∫ t
τk−1

f (s,uk(s))ds for t < τk−1,

(FU)k(t) for τk−1 ≤ t ≤ τk ,
(FU)k(τk) +

∫ t
τk

f (s,uk(s))ds for t > τk ,

where t ∈ [a, b], U = (u1, . . . ,up+1), k = 1, . . . , p + 1, τ0 = a,
τp+1 = b, and τi depends on ui through τi = γi (ui (τi )),
i = 1, . . . , p.
Under some additional assumptions we have proved that the
operator G is compact on Ω ⊂ X.
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Theorem 1

Let the following conditions be satisfied:

transversality conditions

det K 6= 0,

∃f̃ ∈ R : |f(t, x)| ≤ f̃ , a.e. t ∈ [a, b], all x ∈ Rn,

γi (x+Ji (t, x)) ≤ γi (x) for all (t, x) ∈ [a, b]×A, i = 1, . . . , p.

If U = (u1, . . . ,up+1) is a fixed point of the operator G, then the
function

z(t) =


u1(t), t ∈ [a, τ1],

u2(t), t ∈ (τ1, τ2],

. . . . . .

up+1(t), t ∈ (τp, b].

is a solution of problem (1)–(3).
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Theorem 2

Let the following conditions be satisfied:

transversality conditions

det K 6= 0,

∃f̃ ∈ R : |f(t, x)| ≤ f̃ , a.e. t ∈ [a, b], all x ∈ Rn,

γi (x+Ji (t, x)) ≤ γi (x) for all (t, x) ∈ [a, b]×A, i = 1, . . . , p,

∃J̃i ∈ R, i = 1, . . . , p : |Ji (t, x)| ≤ J̃i , (t, x) ∈ [a, b]× Rn,

∀ε > 0 ∃δ > 0 ∀x, y ∈ A :
|x− y| < δ ⇒ ‖f(·, x)− f(·, y)‖∞ < ε,

V ∈ C([ai , bi ];Rn×n), i = 1, . . . , p,V ∗ = sups∈[a,b] |V (s)|,

µj ≥ |K−1|V ∗
(

f̃ (b − a) +
∑p

k=1 J̃k

)
corresponding
+2f̃ (b − a) +

∑p
k=1 J̃k + |K−1c|, ρj ≥ f̃ , j = 1, . . . , n.

Then the operator G is compact on Ω ⊂ X and has a fixed point in
Ω ⊂ X.
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Theorem 3

Under the assumptions of Theorem 2 problem (1)–(3) has at least
one solution z such that

‖z‖∞ ≤ max{µ1, . . . , µn}.
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Dirichlet problem with one state-dependent impulse

We consider the second order Dirichlet boundary value problem
with one state-dependent impulse

z ′′(t) = f (t, z(t)), (9)

z(0) = 0, z(T ) = 0, (10)

z ′(τ+)− z ′(τ−) = J (z(τ)), τ = γ(z(τ)), (11)

where we assume

f ∈ Car([0,T ]× R), J ∈ C (R), γ ∈ C 1(R), (12)
there exists h ∈ Car([0,T ]× [0,∞)) such that
h(t, ·) is nondecreasing for a.e. t ∈ [0,T ] and
|f (t, x)| ≤ h(t, |x |) for a.e. t ∈ [0,T ] and all x ∈ R,

(13)

{
there exists M∈ C ([0,T ]) nondecreasing
and such that |J (x)| ≤ M(|x |) for x ∈ R. (14)
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Dirichlet problem with one state-dependent impulse

Further, we assume

∃K > 0 :
1

K

[∫ T

0
h(s,K + TM(K ))ds +M(K )

]
< min

{
1,

1

T

}
.

(15) 0 < γ(x) < T , |γ′(x)| < T

K1
for |x | ≤ K1,

where K1 = K + TM(K ), K is from (15).

(16)

Definition.

We say that z : [0,T ]→ R is a solution of problem (9)–(11), if z
is continuous on [0,T ], there exists unique τ ∈ (0,T ) such that
γ(z(τ)) = τ , z |[0,τ ] and z |[τ,T ] have absolutely continuous first
derivatives, z satisfies equation (9) for a.e. t ∈ [0,T ] and fulfils
conditions (10), (11).
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1. Sublinear problem

Example

Consider problem (9)–(11) with
T = 1, f (t, x) = t2 − |x |α sgn x , J (x) = |x |β sgn x .

α, β ∈ (0, 1) =⇒ f and J are sublinear in x .

Assumptions (13) and (14) are valid for

h(t, x) = t2 + xα, t ∈ [0, 1], x > 0,

M(x) = xβ, x > 0.

Assumption (15) is satisfied for any sufficiently large K .
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1. Sublinear problem

Example

lim
x→∞

1

x

[∫ 1

0
h(s, x +M(x))ds +M(x)

]
= lim

x→∞

1

x

[
1

3
+ (x + xβ)α + xβ

]
= 0,

α = β = 1
2 =⇒ K = 10 and K1 = 10 +

√
10.

Assumption (16): for c ∈ (0, 1/(2K 2
1 )) we put

γ(x) = cx2 +
1

2
, x ∈ R, (17)

or for c ∈ (0, 1/2), n > cK1 we put

γ(x) = c sin
x

n
+

1

2
, x ∈ R. (18)
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2. Linear problem

Example

Let us consider problem (9)–(11) with f and J having the linear
behaviour in x and put

T = 1, f (t, x) = a(tα − x), J (x) = bx , a, b ∈ R, α > 0.

Then, assumptions (13) and (14) are valid for

h(t, x) = |a|(tα + x), t ∈ [0, 1], x > 0,

M(x) = |b|x , x > 0.
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2. Linear problem

Example

lim
x→∞

1

x

[∫ 1

0
h(s, x +M(x))ds +M(x)

]
= lim

x→∞

1

x

[
|a|
(

1

α + 1
+ x(1 + |b|)

)
+ x |b|

]
= |a|(1 + |b|) + |b|.

Theorem 2 can be applied under the additional assumption

|a| < 1− |b|
1 + |b|

. (19)

If (19) holds, then for any sufficiently large K assumption (15) is
satisfied. Then K1 = K (1 + |b|). Assumption (16) is fulfilled, if γ
is given by (17) or (18).
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3. Superlinear problem

Example

Let us consider problem (9)–(11) with f and J superlinear in x .
Put

T = 1, f (t, x) = c1t3 +c2x3, J (x) =
1

2
x2, c1, c2 ∈ R. (20)

Then, assumptions (13) and (14) are valid for

h(t, x) = |c1|t3 + |c2|x3, t ∈ [0, 1], x > 0,

M(x) =
1

2
x2, x > 0.
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3. Superlinear problem

Example

1

x

[∫ 1

0
h(s, x+M(x))ds+M(x)

]
=

1

x

[
|c1|
4

+|c2|
(

x+
1

2
x2

)3

+
1

2
x2

]
.

Assumption (15) is fulfilled provided there exists K > 0 such that

|c1|
4

+ |c2|
(

K +
1

2
K 2

)3

+
1

2
K 2 < K . (21)

We search K ∈ (0, 1) fulfilling the equation(
27

8
|c2|+

1

2

)
K 2 − K +

|c1|
4

= 0.

Put c1 = 1, c2 = −4/27. Then we can choose K = 1/2 and
K1 = 5/8. Assumption (16) is fulfilled, if γ is given by (17) or (18).
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