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Consider the equation

y(n) = p(x, y, y′, . . . , y(n−1))|y|k sign y, (1)

n ≥ 2, k > 1,

p(x, y0, . . . , yn−1) > 0, p ∈ C(Rn+1).

[Kiguradze I. T., Chanturia T. A. Asymptotic Properties of
Solutions of Nonautonomous Ordinary Differential Equations.
Kluver Academic Publishers, Dordreht-Boston-London. 1993.]
[Kondratiev V. A., Samovol V. S. On some asymptotic properties of
solutions to Emden-Fowler type equation// Differ. equations. 1981.
v. 17. N 4. p. 749–750.]
The problem: to describe the asymptotic behavior of all
possible maximally extended solutions to (1) in the case
p = p0 or p = p(x).



In the cases n = 3 and n = 4, k > 1 the asymptotic classification is
obtained of all solutions to equation (1) (I.Astashova) for p = p(x).
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For the equation

y(n)+p0 |y|k sgn y = 0, n > 2, k ∈ R, k > 1, p0 6= 0, (2)

the following result is proved about the existence of oscillatory
solutions with the same type of asymptotic behavior.

Theorem
For any integer n > 2 and real k > 1 there exists a non-constant
oscillatory periodic function h(s) such that for any p0 > 0 and
x∗ ∈ R the function

y(x) = p
1

k−1

0 (x∗−x)−αh(log(x∗−x)), −∞ < x < x∗, α =
n

k − 1
,

(3)
is a solution to equation (2).





Theorem
For any integer n > 2 and real positive k < 1 there exists a
non-constant oscillatory periodic function h(s), such that for any
p0 with (−1)np0 > 0 and any real x∗ the function

y(x) = |p0|
1

k−1 (x∗ − x)γh(log(x∗ − x)), −∞ < x < x∗, (4)

is a solution to equation (2) with p(x, y0, . . . , yn−1) = p0.



Consider the differential equation

y′′′ = p(x)|y|k sgn y, 0 < k < 1, (5)

with a globally defined positive continuous function p(x) having
positive limits p∗ and p∗ as x→ ±∞. Put β = 3

1−k > 0.

Theorem
Any maximally extended solution to equation (5) is either
(i) the trivial solution y(x) ≡ 0 on (−∞,+∞), or



(ii±) a solution equal to zero on a semi-axis (−∞, x∗] and
constant-sign with asymptotically power behavior on (x∗, +∞),

namely

y(x) = ±C(p(x∗)) (x− x∗)β (1 + o(1)) as x→ x∗ + 0, (6)

y(x) = ±C(p∗) xβ (1 + o(1)) as x→ +∞, (7)

where C(p) =

(
(1− k)3 p

3(k + 2)(2k + 1)

) 1
1−k

, or



(iii) a solution equal to zero on a semi-axis [x∗, +∞) and
oscillating on (−∞, x∗) with its local extremum points (xj)j∈Z
satisfying

xj → −∞, |y(xj)| = |xj |β+o(1) as j → −∞, (8)

xj → x∗ − 0, |y(xj)| = |x∗ − xj |β+o(1) as j → +∞, (9)

or



(iv±) a solution equal to zero on a segment [x∗, x∗] (the case
x∗ = x∗ is admitted), oscillating on (−∞, x∗) with (8)–(9)
satisfied, and constant-sign on (x∗, +∞) with (6)–(7) satisfied, or



(v±) a solution behaving as (7) at +∞, as (8) at −∞, and with
no point x0 satisfying y(x0) = y′(x0) = y′′(x0) = 0.





On Asymptotic Classification of Solutions to
Emden–Fowler Singular Equations of the Fourth
Order

The asymptotic classification of all possible solutions to the
fourth-order Emden–Fowler type differential equations

yIV(x) + p0 |y|k sgn y = 0, 0 < k < 1, p0 > 0 (10)

and
yIV(x)− p0 |y|k sgn y = 0, 0 < k < 1, p0 > 0 (11)

is given.
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