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Introduction

We are interested in the time-delayed reaction-diffusion equations:

ug(t, x) = ug(t, ) — f(u(t,z)) + /OOO/RK(S,w)g(u(t —s,x —w))dwds

e = € R is the spatial variable,

t is the time,
fig € C(R4,Ry), g is called birth function.
o K>0and K € L}(Ry x R).
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Particular cases

e In the case, when f(u) = u and K(s,w) = (s — h)o(w), with
h > 0, we obtain the local reaction-diffusion equations with delay

ug(t, ) = Uy (t,x) — u(t,z) + g(u(t — h,x))

e when f(u) =wu and K(s,w) = d(s — h)K(w) with h > 0, we obtain
the non-local reaction-diffusion equations with delay

ug(t, ) = Uy (t, x) — u(t, ) /K x — (u(t — h,w))dw

Maitere Aguerrea (2014) Existence and uniqueness of positive January 23, 2014 4 /36



e These equations, with appropriate f,g and K, are intensively
studied for the last decade.

o They are used to model many ecological and biological processes,
where wave phenomena are observed and which depend not only
on the present state but also on some past occurrences.

e In a biological context, u is the size of an adult population, so we
will consider only positive solutions, and A is the age of maturity.
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The main goals:

e the existence of wavefronts solutions,

e the uniqueness (up to translation) of wavefront and
semi-wavefront solutions, and

o the minimal speed of propagation of positive travelling wave
solutions.
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Travelling wave

Definition

o A travelling wave solution is a bounded positive continuous
non-constant u(x,t) = p(x + ct), propagating with speed c.

o In the event that the profile ¢ satisfies the boundary conditions
p(—00) =0 and p(+00) = Kk, kK > 0, the travelling wave solution is
called a wavefront.

o If ¢ satisfies p(—o0) =0 or p(+00) = 0, is called semi-wavefront.

v
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Example
Consider the diffusive logistic equation (1937)

ug(t, ) = ugy(t, ) + u(t,z)(1 —u(t,z)), u>0, z €R.

If u(z,t) = p(x + ct) is a wavefront solution, then the profile ¢ is
positive and satisfies

9" (s) — cp'(s) + p(s)(1 — p(s)) = 0,

o(—00) =0, p(+o00) =1.

Kolmogorov A., Petrovskii 1., Piskunov N. (Byul. Mosk. Gos. Univ.
Ser. A Mat. Mekh.)
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The diffusive logistic equation
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Figure : the profile ¢ with ¢ > 0
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» In 1940 Nicholson made pioneer study on the distribution of
blowflies population. Nicholson introduced the equation

ug(t, r) = —du(t, =) + pu(t — h,x)e_b“(t_h’x),t ER, z€eR, §>0

» In 1977 Mackey & Glass (Science 197) proposed the model
hematopoiesis (blood cell production)
pu(t — h,x)

T (u(t— b))

ug(t, ) = u(t,z) + — h,p>0,n>1

» In 1998 So & Yang (J. Differ. Equ.)

ut(ta II}) = umx(t, fﬂ) - 5u(t, IE) +pu(t — h} gj)eibu(tfhvm)
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Typical wavefronts of the monostable reaction-diffusion
equation with delay

@ Monotone birth function
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Figure : g(w) = pwe™ ", p =2;a =1 (Gourley et al., J. Math. Sci., 2004)
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Typical wavefronts of the monostable reaction-diffusion
equation with delay

@ non-monotone birth function
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Figure : g(w) = pwe™ " ,p=4,5,6,7;a = 1 (Gourley et al., J. Math. Sci.,
2004).
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Typical wavefronts of the monostable reaction-diffusion
equation with delay

e non-monotone birth function
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Figure : (Trofimchuk et al., J. Differ. Eq., 2008).
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The critical traveling wave

o Corresponds to the slowest travelling wave.

If g(s) < ¢'(0)s, then the minimal wave speed c, is defined as the
minimal value of ¢ for which the characteristic function associated with
the linearization along the trivial equilibrium

o
x(z,¢) == 22 — cz — f'(0) + g'(O)/ / K (s, w)e #t dyds, z € C,
o Jr

has at least one positive zero.

e If g does not dominated by ¢'(0)s, then ¢, is obtained by
variational principle (Hadeler(1998), Benguria and
Depassier(2002)); Accelerating wave (Garnier, 2010).
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R
General Theory

Aiming to prove the uniqueness of semi-wavefronts to a broad family of
monostable equations, we develop a version of the fundamental
Diekmann-Kaper (D-K) theory of a nonlinear convolution equation for
the scalar integral equation

o(t) = /Xdu(T)/RIC(s,T)g(gp(t—s),T)ds, teR.

e (X, p) will denote a measure space with finite measure p.

e The kernel K:Rx X — [0,+00) is integrable with
Jzx K(s,7)ds >0, 7 € X.

e The measurable g : Ry x X — R4, ¢(0,7) =0, is continuous in ¢
for every fixed 7 € X.
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Examples: nonlinear convolution D-K equation

@ When X is just a single point (i.e. #X = 1), we obtain the
nonlinear convolution equation

@(t) = (gow)* K(t)

Diekmann O. and Kaper H.(1978) in several papers proved the
existence and uniqueness of wavefronts for ¢ satisfies the subtangential
Lipschitz condition |g(u) — g(v)| < ¢'(0)|u — v| for all ¢ > c,.

Maitere Aguerrea (2014) Existence and uniqueness of positive January 23, 2014 16 / 36



Problems

o the Diekmann-Kaper uniqueness theorems do not apply to the
critical fronts (when x(z,cy) = x/(z,¢x) = 0).

e the subtangetial Lipschitz condition |g(s) — g(t)| < ¢'(0)|t — s| is
not necessary for the uniqueness.

@ Some local and non-local reaction-diffusion equations with delay
can be write of this form.
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Example

Consider the travelling wave solution u(t,z) = p(x + ct), to equation

ur(t, ) = ugs(t, ) — u(t,z) + g(u(t — h,z)), x € R.

e Profile ¢ solves the delay differential equation
"(t) = c'(t) — o(t) + g(p(t — he)) =0,

@ Being ¢ a positive bounded solution, it should satisfy the integral
equation

o(t) = —

([ ere=ogtiots —empas + [ e g(ip(s —ema

o(c)
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Finally, we get the D-K equation

o(t) = Kx*g(p)(t),

where
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Example

The nonlocal reaction-diffusion equation with distributive time delays.

ug(t, @) = uge(t, ) — f(u(t,z)) + /OOO/RK(S,w)g(u(t — s,z —w))dwds

If X ={r,m} and

Ks7) :{ w *]]ff}:)(S)’ ::;j g(s,T) :{ 9(s), T=m1, ’

where kp(w) = K(w — ch), fg(s) = Bs — f(s) and
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o Then we obtain the following equation to perfil ¢:

oty = ( / G+ [ e G ).

t

where (Go)(t) == [;° [z K (p(t — cs —w))dwds + fz(p(t)).

e Thus ¢ satisfies

Q" (t)—c'(t / / K(s)g (p(t — cs —w)dwds) ds = 0.

e Finally, u(z,t) = p(z + ct) is a wave solution to

u(t, x) = e (t, )~ f(u(t, ) / /K s, w)g(u(t—s, z—w))dwds
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Some works:

Thieme H., Zhao X.-Q. (J. Differential Equations, 2003)

Fang J., Zhao X. (J. Differential Equations, 2010)

e Wu S., Liu S. (Applied Mathematics Letters, 2009)

Z. Xu, P. Weng (Acta Mathematca Sinica, English Series, 2013)

M. Aguerrea, C. Gomez, S. Trofimchuk (Mathematische Annalen,
2012)

e C. Gomez, H. Prado, S. Trofimchuk (submited, 2012)
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N
Other Models

o the nonlocal KPP-Fisher equation:
pr=Jxp—p+g(p).

» Schumacher ( I. J. Reine Angew. Math., 1980)
» Carr and Chmaj (Proc. Amer. Math. Soc., 2004)
» Coville, Dévila and Martinez (J. Differential Equations, 2008).

@ The nonlocal lattice equation

e (z) = Dlp(x+1)+p(x —1) —2p(x)] —dp(x) + Y B(k)g(p(x —k—cr))
keZ

Fang J., Wei J., Zhao X.-Q. (Proc. Amer. Math. Soc., 2010)
Guo J.-S., Wu C.-H. ( Osaka J. Math. ,2008)

Chen X., Fu S.-C., Guo J.-S. (STAM J. Math. Anal. 2006)

Ma, S., Zou, X. (J. Differential Equations, 2005)

Zinner B., Harris G., Hudson W. (J. Differential Equations,1993)

vV vy VY VvYyy
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Some Uniqueness Results

Trofimchuk et al (J. Differential Equations, 2008).

M. Aguerrea, S. Trofimchuk and G. Valenzuela (Proc. R. Soc. A,2008)
M. Aguerrea, C. Gomez, S. Trofimchuk, (Mathematische Annalen, 2012).
M. Aguerrea (submited, 2013)

Theorem

If g satisfies the condition
lg(s1) — g(s2)| < L|s1 — s2|, s1,82 >0, for some L > 0, then equation

ug(t, @) = uge(t, ) — f(u(t,z)) + /OOO/RK(S,w)g(u(t —s,x —w))dwds

has at most one (modulo translation) semi-wavefront solution
u(z,t) = p(z + ct) for each ¢ > c,.
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Definition

Let ¢, be the minimal value of ¢ for which
o0
XL(z,¢) == z2—cz—i1>118 f’(s)—i—L/ / K(s,w)e >t dwds, L > ¢'(0)
6z o Jr

has at least one positive root.

We observe that ¢, > cs.
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Assumptions
o g€ C(Ry,Ry) is such that g(0) =0, g(s) > 0 for all s > 0, and
differentiable at 0 with ¢'(0) > 0.
o f e CYR4,Ry), f(0) =0, is strictly increasing with f'(0) < ¢'(0).
o g,f € CY® in some neighborhood of 0, with o € (0, 1).

The result is obtained by using our generalization of the
Diekman-Kaper theory.

» Following to Mallet-Paret (J. Dynam. Differential Equations, 1999),
we obtained asymptotic representations of the profile ¢.

> o(t+m) = (a — t)FeMt 4 et (t) with continuous r € L?*(R),
for some appropriate a,m € R, § > 0. Here k = 0 [respectively,
k = 1] if A; is a simple [respectively, double] root of x(z) = 0.
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Some Existence Results

@ T.Faria, S.Trofimchuk (J. Differential Equations, 2006)
e E.Trofimchuk, P.Alvarado, S.Trofimchuk (J. Differential Equations, 2009)
@ M. Aguerrea ( Nonlinear Analysis, 2010)
o C. Gomez, H. Prado, S. Trofimchuk (submited, 2012)
Theorem
(i) If g(s) < Ls, f(s) > f'(0)s for all s > 0 and some L > 0, then the
equation

w(t, x) = um(t,x)—f(u(t,:c))-l—/ooo/RK(S,w)g(u(t—s,:v—w))dwd&

has a semi-wavefront solution u(z,t) = @(x + ct) propagating with
speed ¢ > c,.

(ii) for any c < c4, there not are a semi-wavefront solution
propagating with speed c.

v
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Theorem
(iii) of equation f(s) = g(s) has only two solutions: 0 and k, with
k being globally attracting with respect to f~' o g, then there
is at least one wavefront u(z,t) = (x + ct) propagating with
speed ¢ > ¢, such that ¢(+00) = k.

y

—— y=9(s)

0 K s

G
Figure : G(s) :== (f~1 o g)(s)
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Assumptions

e g€ C(Ry,Ry) is such that g(0) =0, g(s) > 0 for all s >0, and
differentiable at 0 with ¢'(0) > 0.

o f € CYRy,Ry) is strictly increasing with f(0) = 0
0 < f'(0) < ¢'(0), and further f(400) > supg>q g(s).

We apply the theory developed in C. Gomez, H. Prado, S. Trofimchuk ,
to prove the existence.

» Dichotomy principle: lim;—,_ ©(t) = 0 and lim;—, 4 () > € > 0.

» The operator Ap(t) = [y dp(T) [ N (p(t —s),7)ds is
completely continuous map on some approprlate space.

» Shauder’s fixed point theorem implies the existence of
semi-wavefront solution.
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We apply the uniqueness results to some non-local reaction-diffusion
epidemic and population models with distributed time delay, studied in
several works.

v

J. Fang, J. Wei, X. Zhao (Spatial dynamics of a nonlocal and
time-delayed reaction-diffusion system, Journal of Differ. Equations,
2008)

» S. A. Gourley, Y. Kuang (Wavefronts and global stability in
time-delayed population model with stage structure, 2003)

» H. R. Thieme, X.-Q. Zhao (Asymptotic speeds of spread and
traveling waves for integral equations and delayed reaction-diffusion
models, J. Differential Equations, 2003)

» D. Xu, X. Zhao (Asymptotic speed of spread and traveling wave for
nonlocal epidemic model, Discrete and Continuous Dynamical
Systems-Series B, 2005)
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Bounds for the minimal speed

o Aguerrea & Valenzuela (Nonlinear Oscillations, 2010)

We give constructive upper and lower bounds for the minimal speed of
propagation of traveling waves for equation

ug(t, ) = Ugy(t, x) — u(t, z) /Kx— (u(t — h,w))dw, = €R

p—1 2¢/Inp ) k1 ko
* v 1 7h a]-7
° max{2 PO L1 144 < ¢y < min T h €10,1]

p—1 Vinp {]ﬁ k2}
@ max< 2 < ¢y < min ,hell,+o00).
{ ( } > Th [ )

p(2h+h?)+1" h
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(1) Upper bound
(2) Minimal speed
(3) Lower bound

=8 =

Figure : The minimal speed and its bounds

(¢'(0) = 2, the heat kernel K, (s) = (4ma)~?exp (—s%/(4a)), a = 1).
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Results achieved in these works

@ to consider new types of models which include e.g. the nonlocal
KPP-Fisher equations (with either symmetric or anisotropic
dispersal), nonlocal lattice equations and delayed
reaction-diffusion equations;

e to include the critical case (which corresponds to the slowest
wavefronts) into the consideration;

@ to weaken or to remove various restrictions on kernels and
nonlinearities, including the subtangential Lipschitz condition
lg(w) — g(v)| < ¢’(0)|u — v| to uniqueness of wave solution.
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Thank very much.
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