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Consider the differential equation
Y™ = agp(t H 0ily (y9) (1)

where ag € {—1;1}, p: [a,w[—]0,400[- is a continuous function, ¢; : Ay, —]0,400[ (j =0,n—1)-
continuous regularly varying at y) —s Y; functions of orders o, —oo <a <w < +00, Ay, is one-sided
neighbourhood of Yj, Yj is either 0, or oo.

Measurable function ¢ : Ay —]0, +00[, where Y is either 0, or +00 and Ay is one-sided neighbourhood
of Y, is regularly variyng at y — Y (see [1]), if there exists number o € R such that

A
lim M =X forany A >0.
vy ely
In this case the number o is called the order of regularly varying function. Regularly varying as y — Y
zero-order function is called slowly varying function. Every regularly varying as y — Y function of order
o has the representation
e(y) = lyl” L(y), (2)

where L : Ay —]0,4+00[ — is a slowly varying function as y — Y .
Moreover, let’s assume that a slowly varying function L : Ay —]0, +oo[ satisfies Condition Sp , if

L (ue[HOUN ‘nly\) =Liy)[l+o1)] if y—=Y (y€Ay),

where v =signy.
For example, the following functions are slowly varying as y — Y :

1
[Infy[|™, Wn”|ln|y|l, 71,72 €R, exp(|ln|y||”®), 0<~y3<1, exp <n|y>’
In |In |y||

they have a nonzero finite limit as y — Y.

Among these functions, the first two satisfy the Condition Sy, as well as many other functions.

By the definition of a regularly varying functions the differential equation (1) is asymptotically close at
y) — Y; (j=0,n—1) to the equation

= aop(t H |y,

Asymptotic behavior of solutions of this equation is investigated in [2]-[6], as well as in many other works.
In case of regularly varying nonlinearities which are distinct from powers, asymptotic representation of
solutions were established at n =2 in works [7]-[11] and at n > 2, ¢;(y) =1 (j=T,n—1) in [12].
Definition 1. Solution y of the equation (1) will be called P,,(Yy,...,Yn—1,X0) - solution, where —oo <
Ao < 400, if it is defined on an interval [to,w[C [a,w[ and satisfies the following conditions

(n=1) ()12
() imyD () =Y, (j=0n—1 _y"he]
y U (t) € Ay, at t€ [to,w], grtruly t)=Y; (j=0n-1), ?TIB S gD




Our purpose is to determine the conditions for existence of P, (Yp,...,Y,_1,Ag) - solution of the equation
(1) at all possible values of A9 and asymptotic representations as t 1 w for such solutions and their derivatives
up to and including n — 1 order.

Assume that numbers v; (j = 0,n — 1), determined by

o 1, ifeither Y;=+oco, or Y;=0 and Ay, isright neighborhood of 0,
Vi —1, ifeither Y;=—00, or Y;=0 and Ay, isleft neighborhood of 0,

are like
vivjg1 >0 with Yy =400 and vjvj40 <0 with Y;=0 (j=0,n—2). (2)

Such conditions for v; (j = 0,n —1) are necessary for solutions of (1), which are determined in left
neighborhood of w and which satisfy first two conditions of the definition 1.
Let’s reduce two of the theorems established for the equation (1), concerning P, (Yp,...,Yn_-1,X0)—

solutions in a case, when Ag € R\ {0, ;, g, cey T ?,1
Let’s define
agi=Mn—i)A—(n—i—-1) (i=1,...,n),
oj
n—1 n—2 n—2 j
' ()\0 -1 n—j—1
Yo=1-> o5 =) o(n—j-1), C=]] # ’
=0 =0 =0 I a0

i=j+1

no={, ", 1§ 9T 0= [iomer

An

where limit of integration A, is either a, or w and is chosen so that the integral tends either to oo or
tozeroas tTw.

Theorem 1. Let Mg € R\ {O, %,...,Z %,1} and o # 0. Then for existence of P,(Yo,...,Yn_-1,X0) -

solutions of equation (1) it is necessary and if algebraic equation
n—1
ZU] H GOZHGOz‘f‘P = 1+P H a0l+p (3)
i=j+1 i=1 i=1
does not have roots with zero real part, is sufficiently that inequality (2), inequalities
VOjV0j+1a0j+1()\0 — 1)7Tw(t) >0 (] =0,n— 2)7 Oé()Vn,l’)/an(t) >0 at t e]a,w[

and condition

. Tw(t) (1) Y0
1 nl®) _
te  Jn(t) Xo— 1

are satisfied. Moreover, for each such solution at t T w, following asymptotic representations are valid

yO(t) = Qo= Dm0 oy o)) (G=0,1,....n—2),

= agVp—17CJn (t)[1 + o(1)],

n—1 n—j—
11 L, %y(n—l)(t)
Jj=0 [T ao:

i=j4+1



where L; (y9)) = [yD[~%ip,; (y9) (j = 0,n—1). Furthermore, there exists an m-parameter family of
such solutions if , among the roots of equation (8), there are m roots (with regard of multiplicities) with the
real part having the same sign as the function (1 — \o)m,(¢) .

Theorem 2. Let the conditions of theorem 1 be satisfied and the functions L; (j = 0,n—1) satisfy
Condition Sy . Then each P,(Yo,...,Yn_1,No) - solution of differential equation (1) admits the following
asymptotic representations as t 1T w

10.

11.

12.

1

, Un—1[(Ag = Dmy,()]?~91 s, agiyin |0
g (1) ~ LomtlOo = Dme O L oy ) T 1, (ui|m<t>|*o—1)| (=0 T).
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